Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double cropping helps Brazil develop

23.04.2013
It’s not just about agriculture. Growing two crops a year in the same field improves schools, helps advance public sanitation, raises median income, and creates jobs.

New research finds that double cropping — planting two crops in a field in the same year — is associated with positive signs of economic development for rural Brazilians.


Double cropping in a decade
Double cropping (orange) in Mato Grosso has increased noticeably between 2000-01 and 2010-11. The benefits extend broadly in the regional economy. Credit: Brown University

The research focused the state of Mato Grosso, the epicenter of an agricultural revolution that has made Brazil one of the world’s top producers of soybeans, corn, cotton, and other staple crops. That Brazil has become an agricultural powerhouse over the last decade or so is clear. What has been less clear is who is reaping the economic rewards of that agricultural intensification — average Brazilians or wealthy landowners and outside investors.

Leah VanWey, associate professor of sociology at Brown University and the study’s lead author, says her results suggest at least one type of agricultural intensification — double cropping — is associated with development that improves well-being for average rural Brazilians.

Looking at agricultural and economic data from the last decade, VanWey found that in municípios (counties) where double cropping is common, GDP and median per capita income were both substantially higher. Double cropping was also associated with higher quality schools and better public sanitation. “We looked at two indicators of private goods and two indicators of public goods,” VanWey said. “Overall, we find this really nice pattern of impacts on development associated with double cropping. These benefits seem to be widespread through the population.”

Meanwhile, intensification to single-crop fields from pasture with low stocking rates was not associated with development gains, the research found. VanWey says that is probably because double cropping is more labor intensive, which creates jobs, and more lucrative, which creates more tax revenue that can be invested in public goods. That was evidenced by a case study of two counties within Mato Grosso that was part of this new research.

“The community with the most double cropping also has a soy processing plant that employs thousands of workers as well as complementary poultry and swine raising and processing,” VanWey said. “In the long run there isn’t much money in just growing things and selling them, but processing allows the local area and workers to retain more of the per-unit cost of the final product.”

The findings are published in an issue of Philosophical Transactions of the Royal Society B focused on agricultural development in Brazil.

Mato Grosso has drawn much attention from scholars in recent years. It is not only the heart of Brazil’s agricultural production but also sits on the border of the nation’s cerrada (savanna) biome and the Amazon rainforest biome. Some evidence over the last decade suggests that even as agricultural production in the state has increased, deforestation in the Amazon region has slowed. For that reason, the state is seen by many as a model for agricultural development that minimizes harm to the environment.

To understand how land use is associated with economic development, VanWey teamed with John Mustard, professor of geological sciences at Brown, and Stephanie Spera, Mustard’s graduate student. Spera and Mustard used imaging from NASA’s Terra satellite to track land use changes in Mato Grosso from 2000 to 2011. They captured satellite images of the region every 16 days for a year. They looked for peaks in the greenness of the fields followed by a rapid loss of greenness, indicating the ripening and subsequent harvesting of a crop. Two peaks in greenness in the same year is an indicator that a field is double-cropped. Spera and Mustard recorded images from 2000 to 2001, and again from 2010 to 2011, to see how usage had changed over the decade. They found substantial increases in both single- and double-cropped fields.

VanWey then matched those data to local economic data, with the help of Brown undergraduates Rebecca de Sa and Dan Mahr.

The research showed that intensification to single-crop fields from pasture had no effect on economic variables. Double cropping, however, was associated with strong gains. For example, where double cropping was common, median income was substantially higher. According to VanWey’s calculations, median income for citizens of Mato Grosso would be decreased from 346 Brazilian reals per month (about $190) to 144 reals without the effects of double cropping. On the other hand, if all areas double cropped, monthly income would increase to 459 reals.

“[Double cropping] increases median incomes in an entire county, not just among people working in agriculture,” VanWey said. “So I’m arguing that it’s going to have these effects on the entire economy by providing employment that’s related to the agriculture.”

The positive association with public goods such as schools was strong as well. For that analysis, VanWey looked at a 10-point quality assessment scale used by the Brazilian government. She calculated that if all areas of Mato Grosso double cropped, scores on the assessment for public schools would increase from an average of 4.2 to 5.4.

The increases in measures of both personal wealth and public goods suggest widespread economic development associated with double cropping, VanWey concludes. However she’s not yet ready to advocate for public policy steps like blanket subsidies for double cropping. More research needs to be done, she says, to find out why double cropping thrives in some places but not others.

She and her colleagues are working on those questions now.

Funding for the research came from NASA, the National Institutes of Health, and Brown University’s Environmental Change Initiative.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:
http://www.brown.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>