Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dire Drought Ahead, May Lead to Massive Tree Death

17.10.2012
Evidence uncovered by a University of Tennessee, Knoxville, geography professor suggests recent droughts could be the new normal. This is especially bad news for our nation's forests.

For most, to find evidence that recent years' droughts have been record-breaking, they need not look past the withering garden or lawn. For Henri Grissino-Mayer he looks at the rings of trees over the past one thousand years. He can tell you that this drought is one of the worst in the last 600 years in America's Southwest and predicts worst are still to come.

Grissino-Mayer collaborated with a team of scientists led by Park Williams of Los Alamos National Laboratory and others from the U.S. Geological Survey, University of Arizona and Columbia University to evaluate how drought affects productivity and survival in conifer trees in the Southwestern U.S. Their findings are published this month in Nature Climate Change.

Tree rings act as time capsules for analyzing climate conditions because they grow more slowly in periods of drought and the size of rings they produce vary accordingly. Widely spaced rings indicate wetter seasons and narrow rings indicate drier seasons.

"Using a comprehensive tree-ring data set from A.D. 1000 to 2007, we found that the U.S. has suffered several 'mega-droughts' in the last 1,000 years in the Southwest," said Grissino-Mayer. "But the most recent drought that began in the late 1990s lasted through the following decade and could become one of the worst, if not the worst, in history."

The researchers created a tree-ring-based index that catalogs the drought stress on forests which resolves the contributions of vapor-pressure deficit—the difference between the moisture in the air and how much the air can hold—and precipitation. They linked this information to disturbances that cause changes in forests, such as bark-beetle outbreaks, mortality and wildfires and compared these data with their model projections.

"Looking forward to 2050, our climate-forest stress model suggests we will see worse drought and increased tree mortality than we've seen in the past 1,000 years," Grissino-Mayer said. "This drought will be exacerbated by increasing temperatures globally, foreshadowing major changes in the structure and species composition of forests worldwide."

Increasing temperatures impact the water balance because they exponentially influence how much water evaporates into the atmosphere. More water in the air means less water in the ground. Trees need that water to survive, especially in water-limited areas like the American Southwest.

"We have nothing comparable in the past to today's environment and certainly tomorrow's environment," Grissino-Mayer said. "With increasing drought stress, our forests of tomorrow will hardly resemble our forests of yesterday."

Grissino-Mayer suggests forest management practices will need to adjust to the changes, noting the increased danger for wildfires even in East Tennessee's Great Smoky Mountains.

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>