Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dire Drought Ahead, May Lead to Massive Tree Death

17.10.2012
Evidence uncovered by a University of Tennessee, Knoxville, geography professor suggests recent droughts could be the new normal. This is especially bad news for our nation's forests.

For most, to find evidence that recent years' droughts have been record-breaking, they need not look past the withering garden or lawn. For Henri Grissino-Mayer he looks at the rings of trees over the past one thousand years. He can tell you that this drought is one of the worst in the last 600 years in America's Southwest and predicts worst are still to come.

Grissino-Mayer collaborated with a team of scientists led by Park Williams of Los Alamos National Laboratory and others from the U.S. Geological Survey, University of Arizona and Columbia University to evaluate how drought affects productivity and survival in conifer trees in the Southwestern U.S. Their findings are published this month in Nature Climate Change.

Tree rings act as time capsules for analyzing climate conditions because they grow more slowly in periods of drought and the size of rings they produce vary accordingly. Widely spaced rings indicate wetter seasons and narrow rings indicate drier seasons.

"Using a comprehensive tree-ring data set from A.D. 1000 to 2007, we found that the U.S. has suffered several 'mega-droughts' in the last 1,000 years in the Southwest," said Grissino-Mayer. "But the most recent drought that began in the late 1990s lasted through the following decade and could become one of the worst, if not the worst, in history."

The researchers created a tree-ring-based index that catalogs the drought stress on forests which resolves the contributions of vapor-pressure deficit—the difference between the moisture in the air and how much the air can hold—and precipitation. They linked this information to disturbances that cause changes in forests, such as bark-beetle outbreaks, mortality and wildfires and compared these data with their model projections.

"Looking forward to 2050, our climate-forest stress model suggests we will see worse drought and increased tree mortality than we've seen in the past 1,000 years," Grissino-Mayer said. "This drought will be exacerbated by increasing temperatures globally, foreshadowing major changes in the structure and species composition of forests worldwide."

Increasing temperatures impact the water balance because they exponentially influence how much water evaporates into the atmosphere. More water in the air means less water in the ground. Trees need that water to survive, especially in water-limited areas like the American Southwest.

"We have nothing comparable in the past to today's environment and certainly tomorrow's environment," Grissino-Mayer said. "With increasing drought stress, our forests of tomorrow will hardly resemble our forests of yesterday."

Grissino-Mayer suggests forest management practices will need to adjust to the changes, noting the increased danger for wildfires even in East Tennessee's Great Smoky Mountains.

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>