Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dire Drought Ahead, May Lead to Massive Tree Death

17.10.2012
Evidence uncovered by a University of Tennessee, Knoxville, geography professor suggests recent droughts could be the new normal. This is especially bad news for our nation's forests.

For most, to find evidence that recent years' droughts have been record-breaking, they need not look past the withering garden or lawn. For Henri Grissino-Mayer he looks at the rings of trees over the past one thousand years. He can tell you that this drought is one of the worst in the last 600 years in America's Southwest and predicts worst are still to come.

Grissino-Mayer collaborated with a team of scientists led by Park Williams of Los Alamos National Laboratory and others from the U.S. Geological Survey, University of Arizona and Columbia University to evaluate how drought affects productivity and survival in conifer trees in the Southwestern U.S. Their findings are published this month in Nature Climate Change.

Tree rings act as time capsules for analyzing climate conditions because they grow more slowly in periods of drought and the size of rings they produce vary accordingly. Widely spaced rings indicate wetter seasons and narrow rings indicate drier seasons.

"Using a comprehensive tree-ring data set from A.D. 1000 to 2007, we found that the U.S. has suffered several 'mega-droughts' in the last 1,000 years in the Southwest," said Grissino-Mayer. "But the most recent drought that began in the late 1990s lasted through the following decade and could become one of the worst, if not the worst, in history."

The researchers created a tree-ring-based index that catalogs the drought stress on forests which resolves the contributions of vapor-pressure deficit—the difference between the moisture in the air and how much the air can hold—and precipitation. They linked this information to disturbances that cause changes in forests, such as bark-beetle outbreaks, mortality and wildfires and compared these data with their model projections.

"Looking forward to 2050, our climate-forest stress model suggests we will see worse drought and increased tree mortality than we've seen in the past 1,000 years," Grissino-Mayer said. "This drought will be exacerbated by increasing temperatures globally, foreshadowing major changes in the structure and species composition of forests worldwide."

Increasing temperatures impact the water balance because they exponentially influence how much water evaporates into the atmosphere. More water in the air means less water in the ground. Trees need that water to survive, especially in water-limited areas like the American Southwest.

"We have nothing comparable in the past to today's environment and certainly tomorrow's environment," Grissino-Mayer said. "With increasing drought stress, our forests of tomorrow will hardly resemble our forests of yesterday."

Grissino-Mayer suggests forest management practices will need to adjust to the changes, noting the increased danger for wildfires even in East Tennessee's Great Smoky Mountains.

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>