Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop Rotation with Nematode-Resistant Wheat Can Protect Tomatoes

15.05.2013
In a study published online today in Crop Science, scientists describe a nematode-resistant wheat. But while the wheat carries the resistance to the pest, the benefits are actually seen in the crop that is grown after it.

Root-knot nematodes cause crop losses around the world, and they can be difficult to control. In order to reproduce, nematodes need to infect a living plant root.

Once they are present in soil, they can survive winter in a fallow field and infect plants during the next growing season. Trap crops – unsuitable hosts that “trick” the nematodes into starting their life cycle but then prevent them from reproducing – are often a better option than leaving the field fallow.

“Once nematodes commit to being a parasite, they have to complete their life cycle,” explains Valerie Williamson, lead author of the study and professor at University of California – Davis. “If they don’t reproduce, the population dies out.”

Trap crops can reduce the number of parasites in the soil and lessen the effects of the pests on the next crop in the rotation. But crops resistant to nematodes can be hard to find due to the pest’s wide range of hosts, and trap crops are often plants that are less valuable to farmers. In the present study, researchers found a resistant strain of wheat that can reduce nematode numbers in soil and protect the next rotation of tomato plants.

“What’s nice about this finding is that wheat is what farmers often use as a rotation crop in California,” says Williamson.

The researchers were surprised to find the resistant wheat. They had tried a number of different rotation crops before turning to wheat. Wheat breeder and senior co-author Jorge Dubcovsky then gave Williamson a strain of wheat called Lassik. Lassik is similar to wheat that is commonly grown, but it has a slight difference. A small segment of genes from another wheat strain relocated, through breeding, into Lassik.

This relocated segment has no effect on yield or behavior of the crop, but Williamson and her co-authors found that it did have a benefit – it made the wheat resistant to nematodes. “Dubcovsky gave us this strain because it had other resistance genes in it,” says Williamson. “It turned out, to our surprise, that it also had nematode resistance.”

Once they realized that the Lassik wheat was more resistant to nematodes than the wheat normally grown, the research team validated the source of the resistance by comparing pairs of strains with and without the relocated segment. Then to determine if rotating the resistant wheat with tomato plants would help protect the tomatoes, the authors grew Lassik wheat and used some of the soil to plant tomato seedlings. The wheat had the effect they were hoping for – the tomatoes grown in soil from the resistant wheat plots were less damaged by nematodes.

“If farmers use a wheat that does not have the resistant genes, more nematodes survive, and they’ll be there when they plant tomatoes,” explains Williamson. “But if they plant the resistant wheat, there won’t be as many nematodes in the soil.” Dubcovsky noted that the last three bread wheat varieties released by the University of California Wheat breeding program and the USDA- supported Triticeae-CAP project all carry this resistance gene and are readily available to growers.

The results from the study offer a promising option for reducing nematode damage. The next step is to verify the findings on a larger scale. Williamson and her team grew plants both in greenhouses and in small microplots. They are now anticipating that agronomists will try the rotation on a field scale.

“We wanted to get the results out there so that people who work in the field, farm advisers for example, can see if it works in practice as well as it did in a controlled experiment.”

View the abstract at: http://dx.doi.org/doi:10.2135/cropsci2012.12.0681

To obtain a copy of the complete article, please contact Madeline Fisher at 608-268-3973, mfisher@sciencesocieties.org or Caroline Schneider at 608-268-3976, cschneider@sciencesocieties.org.

The corresponding author, Valerie Williamson, can be contacted at vmwilliamson@ucdavis.edu.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/abstracts/0/0/cropsci2012.12.0681.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit www.crops.org/publications/cs

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Valerie Williamson | Newswise
Further information:
http://www.ucdavis.edu
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>