Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Does crop diversity affect pest control by natural enemy on an EMS using a microlandscape?

The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services.

Professor GE Feng and his group from State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences set out to tackle this problem.

After 4-years of field experiments, they have developed a novel experimental model system using microlandscape to examine resource concentration hypothesis and discovered the ecological mechanism behind the landscape pattern and structure. They found that high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services.

Their work, entitled "Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape", was published in SCIENCE CHINA Life Sciences.2013, Vol 56(8).

Agro-ecosystems are composed of a variety of cultured crops grown mostly for human consumption, and simultaneously supply multiple ecosystem services. In these ecosystems, tri-trophic level interactions (crop, pest, and natural enemy) are an important component and have evolved close relationships. Indeed, the effect of species composition and community structure on yields and ecosystem services is a very popular topic in ecology. Some studies have reported that plant species richness directly affects species composition and the abundance of pests, which would influence the biological control services provided by natural enemies. Indeed, a high level of plant diversity (e.g., intercropping, non-tillage, and weeds) could suppress pest populations and reduce yield losses caused by pest damage. Root proposed two hypotheses (the resource concentration hypothesis and the natural enemy hypothesis) to interpret these phenomena. However, Andow found that high plant species richness did not always facilitate the biological control of pests, and only 52%–53% of pest species can be affected by plant species richness. In fact, no consensus has been reached based on this type of research to date. Therefore, the effect of plant species richness on biodiversity and the biological control service of natural enemies in agro-ecosystems is currently an important research topic.

The study region is located in the county of Yishui, Linyi City, Shandong Province, China (35°48'05"N, 118°37'11"E) and has a temperate maritime monsoon climate with an elevation of 101.1–916.1 m. An experimental microlandscape (EMS) was implemented. Twenty primary crop species commonly grown in North China were selected. Five plant richness levels (1, 2, 4, 8, and 16) were designed, and we randomly selected 1, 2, 4, 8, and 16 species to achieve the five crop species richness levels. Every treatment was repeated 10 times. Fifty 9 m×9 m plots were used which were located 1 m apart; the entire experimental site covered 70 m×150 m. For a given plot, the crops were distributed in a matrix of 22 rows and 22 columns. The crop density and amount of fertilizer use was the same in each plot so that the study sites were homogeneous. Herbicide was applied to the unplanted area between the plots to suppress weed growth. No pesticides, herbicides, chemical fertilizers, or other agrichemicals were applied to any of the crops in any of the plots. Weeds were removed by hand. Crop species richness (N) and crop arrangements in each plot remained the same during the four-year study (2007–2010).

Crop species richness had major effects on the biomass of pests and natural enemies, with the pest biomass increasing with increasing crop species richness. However, the differences were not significant. In addition, the natural enemy biomass also increased with increasing crop species richness, although the differences were not significant. The mid-range value of the pest and natural enemy biomass peaked when the crop species richness was at a maximum (N=16); the mid-range value of biomass was 0.12 g/22 plants and 0.04 g/22 plants, respectively. When the crop species richness was at a minimum (N=1), the mid-range value of pest and natural enemy biomass was also low (pest, 0.04 g/22 plants; natural enemy, 0.03 g/22 plants).

The relationship at the tri-trophic level was analyzed by generalized additive models. The effects of sampling time, pest biomass, and crop biomass on the natural enemy biomass were also analyzed. The sampling time had significant effects on the biomass of natural enemies. Although the crop biomass also no significant effects on the natural enemy biomass, the pest biomass did have significant effects. The sampling time had no significant effects on the pest biomass, and the crop biomass also did. In contrast, the natural enemy biomass did have significant effects on the pest biomass.

The ratio of biomass (natural enemy/pest) was used to analyze the relationship between the biological control service and crop species richness. The results showed that the ratio of biomass (biological control service) first increased and then decreased with increasing crop species richness; the differences were significant. The biological control service peaked when the crop species richness was 4, with the median and mean of the natural enemy/pest ratio at the maximum. In contrast, the median and mean of the natural enemy/pest ratio were both at a minimum when the crop species richness was 8. The relationship between the pest and natural enemy biomass was positive and significant: the natural enemy biomass increased with increasing pest biomass. The relationship between the pest and crop biomass was also positive and significant: the pest biomass increased with increasing crop biomass. However, no significant relationship existed between the crop and natural enemy biomasses (as shown in the Figure).

Our finding on the effect of crop species richness on biomass of pest and natural enemy species can be applied in integrated pest management strategies that aim to incorporate crop composition and arrangement into habitat management as they suggest that successful biological control would mainly be effective through the use of well-planned landscape design and the creation of habitat diversity. Combining agricultural landscape design with biological control services may effectively address the ecological function of natural enemies when integrated pest management strategies are used regionally and may provide multiple ecosystem services. Far less attention has been paid to additional ecosystem services that agricultural landscapes could provide as managed landscapes. Our results not only address the biological control of insect pests but also address other ecological services received through landscape design and habitat manipulation.

See the article: ZHAO ZiHua, SHI PeiJian, MEN XingYuan, OUYANG Fang, GE Feng. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape. SCIENCE CHINA Life Sciences, 2013, 56(8): 758-766.

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

Yan Bei | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>