Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn gluten meal tested on squash survival, yields

18.03.2011
Banded applications of CGM found effective in direct-seeded squash production

Corn gluten meal, a powdery byproduct of the wet-milling process of corn, has shown important potential for use as an organic, non-selective preemergence or preplant-incorporated herbicide.

A team of researchers from the U.S. Department of Agriculture-Agricultural Research Service and Oklahoma State University recently reported on the impact of corn gluten meal (CGM) applications on direct-seeded squash (Cucurbita pepo), and determined that CGM can be effective and safe if used in banded applications.

Used for years as a supplement in dog, fish, and livestock feed, corn gluten meal offers a non-toxic yet effective alternative to traditional, chemical-based products for weed control in lawns and gardens. The development of a mechanized application system for the banded placement of CGM between crop rows (seed row not treated) has increased its potential use in organic vegetable production, especially in direct-seeded vegetables. Charles L. Webber III, James W. Shrefler, and Merritt J. Taylor authored a study in HortTechnology that determined the impact of CGM applications (formulations, rates, incorporation, and banded applications) on direct-seeded squash plant survival and yields.

The research revealed that that neither CGM formulation (powdered or granulated) nor incorporation method (incorporated or non-incorporated) resulted in significant differences in plant survival or squash yields. "There was no significant difference between powdered and granulated CGM formulations or incorporating CGM and leaving CGM on the soil surface (no incorporation) for squash plant survival or yields. These results are consistent with earlier reports with vegetables, although previous research did not investigate broadcast versus banded applications", noted the authors.

According to the scientists, this research proved that CGM applications can be safely used if applied in a strip between vegetable rows. "The banded application—CGM placed between rows—resulted in significantly greater crop safety than the broadcast, or non-banded, applications", they explained. "Before this research, it was determined that CGM was phytotoxic when used as a preplant or a preplant-incorporated organic herbicide. It was also known that as a non-selective material, CGM would not only kill and inhibit weed growth, but also would negatively impact direct-seeded crop establishment, seedling vigor, and yields."

Previous research also suggested that CGM applications be restricted to established crops (turf and transplants) rather than direct-seeded vegetable crops. "Our research determined that a CGM-free planting strip (CGM applied between crop rows) provided increased crop safety for direct-seeded squash compared with broadcast applications," noted corresponding author Charles Webber.

Webber added that the research has implications for all direct-seeded organic vegetables "once optimum CGM application rates and CGM-free strip width can be determined for specific vegetables to maximize crop safety, yields, and weed control efficacy."

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/20/4/696

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>