Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Corn gluten meal tested on squash survival, yields

Banded applications of CGM found effective in direct-seeded squash production

Corn gluten meal, a powdery byproduct of the wet-milling process of corn, has shown important potential for use as an organic, non-selective preemergence or preplant-incorporated herbicide.

A team of researchers from the U.S. Department of Agriculture-Agricultural Research Service and Oklahoma State University recently reported on the impact of corn gluten meal (CGM) applications on direct-seeded squash (Cucurbita pepo), and determined that CGM can be effective and safe if used in banded applications.

Used for years as a supplement in dog, fish, and livestock feed, corn gluten meal offers a non-toxic yet effective alternative to traditional, chemical-based products for weed control in lawns and gardens. The development of a mechanized application system for the banded placement of CGM between crop rows (seed row not treated) has increased its potential use in organic vegetable production, especially in direct-seeded vegetables. Charles L. Webber III, James W. Shrefler, and Merritt J. Taylor authored a study in HortTechnology that determined the impact of CGM applications (formulations, rates, incorporation, and banded applications) on direct-seeded squash plant survival and yields.

The research revealed that that neither CGM formulation (powdered or granulated) nor incorporation method (incorporated or non-incorporated) resulted in significant differences in plant survival or squash yields. "There was no significant difference between powdered and granulated CGM formulations or incorporating CGM and leaving CGM on the soil surface (no incorporation) for squash plant survival or yields. These results are consistent with earlier reports with vegetables, although previous research did not investigate broadcast versus banded applications", noted the authors.

According to the scientists, this research proved that CGM applications can be safely used if applied in a strip between vegetable rows. "The banded application—CGM placed between rows—resulted in significantly greater crop safety than the broadcast, or non-banded, applications", they explained. "Before this research, it was determined that CGM was phytotoxic when used as a preplant or a preplant-incorporated organic herbicide. It was also known that as a non-selective material, CGM would not only kill and inhibit weed growth, but also would negatively impact direct-seeded crop establishment, seedling vigor, and yields."

Previous research also suggested that CGM applications be restricted to established crops (turf and transplants) rather than direct-seeded vegetable crops. "Our research determined that a CGM-free planting strip (CGM applied between crop rows) provided increased crop safety for direct-seeded squash compared with broadcast applications," noted corresponding author Charles Webber.

Webber added that the research has implications for all direct-seeded organic vegetables "once optimum CGM application rates and CGM-free strip width can be determined for specific vegetables to maximize crop safety, yields, and weed control efficacy."

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at

Michael W. Neff | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
21.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>