Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compost Filter Socks Improve Runoff from Croplands

21.06.2010
Grassed waterways including compost filter socks reduce soil erosion and herbicide concentrations from fields

Water runoff from cropped farm fields can contain large amounts of eroded soil as well as some of the fertilizer and herbicide. Expanding on existing conservation practices, a team of scientists has tested whether compost filters socks in grassed waterways would reduce sediment flow and retain dissolved chemicals in runoff. The researchers observed reduced sediment in a non-tilled field and reduced concentrations of two herbicides.

Compost filter socks are mesh tubes filled with composted bark and wood chips. These devices have been approved by the U.S. Environmental Protection Agency for use at construction sites as an alternative to silt fences and bales of straw, but have not been tested in agricultural fields.

The two year field study was conducted by USDA-ARS soil scientists Martin Shipitalo and Lloyd Owens, along with hydraulic engineer Jim Bonta and Ohio State University collaborator Libby Dayton. They found that filter socks reduced sediment concentration by 49% in runoff from the tilled field, but had no effect for the no-till field, where sediment concentrations were already 1/5 of that from the tilled field. The filter socks also reduced the concentrations of the herbicide alachlor by 18% and the herbicide glyphosate (Roundup) by 5% in runoff from the tilled field. The filter socks had a negligible effect on nutrient concentrations in the runoff.

Their report was published in the May-June 2010 issue of the Journal of Environmental Quality, published by the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America. It was conducted at the USDA-ARS’s North Appalachian Experimental Watershed near Coshocton, OH.

Conservation tillage practices, sometimes referred to as “no-till,” leave some of the residue from the previous crop on the soil surface, help reduce the amount of sediment lost in runoff, but do little to reduce the concentrations of surface-applied nutrients and herbicides that can be readily dissolved and transported in runoff.

Similarly, conservation buffers, such as filter strips, riparian forest buffers, and grassed waterways, can further reduce chemical and nutrient transport as runoff moves from crop fields to streams. They are also generally more effective in retaining sediment than dissolved chemicals and work best when runoff is uniformly distributed across the entire area of the buffer.

Unfortunately, uniform distribution is often difficult to achieve and maintain due to soil and topographic conditions. Runoff can naturally concentrate in small areas as it passes through buffers. In fact, the USDA-NRCS has referred to concentrated flow as the ‘nemesis’ of pesticide trapping in conservation buffers.

This study demonstrates that filter socks can enhance the effectiveness of grassed waterways in reducing sediment transport. Investigations in which materials will be mixed with the compost to improve the removal of nutrients and herbicides are being conducted in collaboration with filter sock manufacturer Filtrexx International, LLC. If these results are promising, filter socks may become another tool that can be used by farmers and conservationists to reduce the impact of crop production on surface water quality.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/39/3/1009.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

Further reports about: Agronomy Compost Filter Science TV Society Soil Soil Science crop environmental risk

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>