Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common insecticide can decimate tadpole populations

01.10.2008
Insecticide malathion initiates chain reaction that deprives tadpoles of food source, indirectly killing them at doses too small to kill them directly

The latest findings of a University of Pittsburgh-based project to determine the environmental impact of routine pesticide use suggests that malathion—the most popular insecticide in the United States—can decimate tadpole populations by altering their food chain, according to research published in the Oct. 1 edition of Ecological Applications.

Gradual amounts of malathion that were too small to directly kill developing leopard frog tadpoles instead sparked a biological chain of events that deprived them of their primary food source. As a result, nearly half the tadpoles in the experiment did not reach maturity and would have died in nature. The research was funded by a National Science Foundation grant.

The results build on a nine-year effort by study author Rick Relyea, an associate professor of biological sciences in Pitt's School of Arts and Sciences, to investigate whether there is a link between pesticides and the global decline in amphibians, which are considered an environmental indicator species because of their sensitivity to pollutants. Their deaths may foreshadow the poisoning of other, less environmentally sensitive species—including humans. Relyea published papers in 2005 in Ecological Applications suggesting that the popular weed-killer Roundup® is "extremely lethal" to amphibians in concentrations found in the environment.

For his current research, Relyea and the study's coauthor, Pitt alumnus Nicole Diecks (CGS '05), created simulated ponds from 300-gallon outdoor tanks containing wood frog and leopard frog tadpoles. They exposed the ponds to no malathion, moderate concentrations in a single dose, or low concentrations in weekly doses that mirror the levels tadpoles experience in nature. Malathion is commonly used worldwide to thwart crop pests and control mosquitoes that carry malaria and West Nile virus. It has been detected in the wetlands where frogs and other amphibians live.

The doses of malathion in the simulated ponds were too low to directly kill the amphibians, but instead wiped out tiny animals known as zooplankton that eat algae that float in the water. With few zooplankton remaining, the algae, known as phytoplankton, grew rapidly and prevented sunlight from reaching the bottom-dwelling algae, or periphyton, which tadpoles eat. This chain of events occurred over a period of several weeks. The wood frog tadpoles, which mature quickly, were largely unaffected.

Leopard frog tadpoles, on the other hand, require more time to develop into frogs and experienced slower growth as a result of the reduced amount of periphyton. Ultimately, 43 percent of the leopard frog tadpoles did not mature as a result of the repeated application of malathion at very low concentrations. Relyea reported that the multiple low doses were a greater detriment than the single dose, which had a concentration 25-times higher than the multiple applications combined. The single doses also wiped out the zooplankton, but they eventually recovered and the pond reverted back to its original state. The repeated doses prevented the zooplankton from recovering.

"The chain of events caused by malathion deprived a large fraction of the leopard frog tadpoles of the nutrients they needed to metamorphose into adult frogs," Relyea said. "Repeated applications sustained that disruption of the tadpoles' food supply. So, even concentrations that cannot directly kill tadpoles can indirectly kill them in large numbers."

The research results should apply to several other insecticides that are highly lethal to zooplankton, including carbaryl, diazinon, endosulfan, esfenvalerate, and pyridaben, Relyea said. All of these chemicals are toxic to humans as well and are commonly used in the United States, although some are banned in other countries. The effect of insecticides and other pesticides on amphibians are not widely known because current regulations from the U.S. Environmental Protection Agency do not require amphibian testing. The EPA also relies on single-species tests to assess a pesticide's risk and does not account for potential indirect repercussions.

"The indirect impacts on the amphibians observed in this study could not be observed in traditional, single-species tests," Relyea said. "These results demonstrate that we need to take a much broader view of the consequences pesticides might have in our world."

Leopard and wood frogs naturally range across North America, including Pennsylvania and the Northeastern United States. Once plentiful, leopard frogs have declined in recent years.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu
http://www.esajournals.org/loi/ecap

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>