Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common insecticide can decimate tadpole populations

01.10.2008
Insecticide malathion initiates chain reaction that deprives tadpoles of food source, indirectly killing them at doses too small to kill them directly

The latest findings of a University of Pittsburgh-based project to determine the environmental impact of routine pesticide use suggests that malathion—the most popular insecticide in the United States—can decimate tadpole populations by altering their food chain, according to research published in the Oct. 1 edition of Ecological Applications.

Gradual amounts of malathion that were too small to directly kill developing leopard frog tadpoles instead sparked a biological chain of events that deprived them of their primary food source. As a result, nearly half the tadpoles in the experiment did not reach maturity and would have died in nature. The research was funded by a National Science Foundation grant.

The results build on a nine-year effort by study author Rick Relyea, an associate professor of biological sciences in Pitt's School of Arts and Sciences, to investigate whether there is a link between pesticides and the global decline in amphibians, which are considered an environmental indicator species because of their sensitivity to pollutants. Their deaths may foreshadow the poisoning of other, less environmentally sensitive species—including humans. Relyea published papers in 2005 in Ecological Applications suggesting that the popular weed-killer Roundup® is "extremely lethal" to amphibians in concentrations found in the environment.

For his current research, Relyea and the study's coauthor, Pitt alumnus Nicole Diecks (CGS '05), created simulated ponds from 300-gallon outdoor tanks containing wood frog and leopard frog tadpoles. They exposed the ponds to no malathion, moderate concentrations in a single dose, or low concentrations in weekly doses that mirror the levels tadpoles experience in nature. Malathion is commonly used worldwide to thwart crop pests and control mosquitoes that carry malaria and West Nile virus. It has been detected in the wetlands where frogs and other amphibians live.

The doses of malathion in the simulated ponds were too low to directly kill the amphibians, but instead wiped out tiny animals known as zooplankton that eat algae that float in the water. With few zooplankton remaining, the algae, known as phytoplankton, grew rapidly and prevented sunlight from reaching the bottom-dwelling algae, or periphyton, which tadpoles eat. This chain of events occurred over a period of several weeks. The wood frog tadpoles, which mature quickly, were largely unaffected.

Leopard frog tadpoles, on the other hand, require more time to develop into frogs and experienced slower growth as a result of the reduced amount of periphyton. Ultimately, 43 percent of the leopard frog tadpoles did not mature as a result of the repeated application of malathion at very low concentrations. Relyea reported that the multiple low doses were a greater detriment than the single dose, which had a concentration 25-times higher than the multiple applications combined. The single doses also wiped out the zooplankton, but they eventually recovered and the pond reverted back to its original state. The repeated doses prevented the zooplankton from recovering.

"The chain of events caused by malathion deprived a large fraction of the leopard frog tadpoles of the nutrients they needed to metamorphose into adult frogs," Relyea said. "Repeated applications sustained that disruption of the tadpoles' food supply. So, even concentrations that cannot directly kill tadpoles can indirectly kill them in large numbers."

The research results should apply to several other insecticides that are highly lethal to zooplankton, including carbaryl, diazinon, endosulfan, esfenvalerate, and pyridaben, Relyea said. All of these chemicals are toxic to humans as well and are commonly used in the United States, although some are banned in other countries. The effect of insecticides and other pesticides on amphibians are not widely known because current regulations from the U.S. Environmental Protection Agency do not require amphibian testing. The EPA also relies on single-species tests to assess a pesticide's risk and does not account for potential indirect repercussions.

"The indirect impacts on the amphibians observed in this study could not be observed in traditional, single-species tests," Relyea said. "These results demonstrate that we need to take a much broader view of the consequences pesticides might have in our world."

Leopard and wood frogs naturally range across North America, including Pennsylvania and the Northeastern United States. Once plentiful, leopard frogs have declined in recent years.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu
http://www.esajournals.org/loi/ecap

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>