Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon mitigation strategy uses wood for buildings first, bioenergy second

23.11.2011
Proposals to remove the carbon dioxide caused by burning fossil fuel from the atmosphere include letting commercially managed forests grow longer between harvests or not cutting them at all.

An article published in the journal Forests says, however, that Pacific Northwest trees grown and harvested sustainably, such as every 45 years, can both remove existing carbon dioxide from the air and help keep the gas from entering the atmosphere in the first place.

That's provided wood is used primarily for such things as building materials instead of cement and steel – which require more fossil fuels in their manufacture – and secondarily that wood wastes are used for biofuels to displace the use of fossil fuels.

"When it comes to keeping carbon dioxide out of the atmosphere, it makes more sense to use trees to recycle as much carbon as we can and offset the burning of fossil fuel than it does to store carbon in standing forests and continuing burning fossil fuels," said Bruce Lippke, University of Washington professor emeritus of forest resources.

Lippke is one of eight co-authors of the article in Forests. It is the first to comprehensively calculate using woody biomass for bioenergy in addition to using wood for long-lived products. The article focuses on the extra carbon savings that can be squeezed from harvesting trees if wood not suitable for long-term building materials is used for bioenergy. Such wood can come from the branches and other debris left after harvesting, materials thinned from stands or from plantations of fast-growing trees like willow.

For the article, the co-authors looked at selected bioenergy scenarios using wood from the U.S. Pacific Northwest, Southeast and Northeast.

They considered two ways of producing ethanol from woody biomass – gasification and fermentation – and used what's called life cycle analysis to tally all the environmental effects of gathering, processing and using the resulting fuels. Ethanol from woody biomass emits less greenhouse gas than an equivalent amount of gasoline, between 70 percent and a little over 100 percent less.

How much of a reduction depends on the process. Achieving slightly more than a 100 percent reduction in greenhouse gas emissions is possible, for example, using a fermentation process that both produces ethanol and generates enough electricity to offset the fossil fuel used in the fermentation process.

In contrast, producing and using corn ethanol to displace gasoline reduces greenhouse gas emissions 22 percent on average, according to the Environmental Protection Agency's fact sheet "Greenhouse Gas Impacts of Expanded Renewable and Alternative Fuels Use."

While biofuels from woody biomass are carbon friendly, Lippke cautions that the U.S. should not use tax breaks or other incentives that inadvertently divert wood to bioenergy that is better used for long-lived building materials and furniture.

"Substituting wood for non-wood building materials can displace far more carbon emissions than using the wood for biofuel," the article says. "This fact creates a hierarchy of wood uses that can provide the greatest carbon mitigation for each source of supply."

Lippke said using wood for products and bioenergy can be considered carbon neutral because the carbon dioxide trees absorb while growing eventually goes back to the atmosphere when, for instance, wood rots after building demolition or cars burn ethanol made from woody debris. With sustainably managed forests, that carbon dioxide is then absorbed by the growing trees awaiting the next harvest.

The co-authors aren't advocating that all forests be harvested, just the ones designated to help counter carbon dioxide in the atmosphere. Older forests, for instance, provide ecological values even though they absorb less carbon dioxide as they age.

In the article the authors also urge policymakers and citizens to consider not just carbon mitigation but also to find ways to weigh the importance of energy independence from fossil fuels when considering how to use woody biomass for bioenergy.

"Simply burning woody biomass to generate heat or electricity makes sense for carbon mitigation," he says, "But there's no energy independence gained," Lippke said. So carbon efficiency is only one part of the equation. Transportation fuels depend heavily on imported oil and therefore biofuels that replace them make additional contributions to the domestic economy, including energy independence and rural economic development, the authors said.

Other co-authors are Richard Gustafson and Elaine Oneil with the UW, Richard Venditti with North Carolina State University, Timothy Volk with the State University of New York, Leonard Johnson with the University of Idaho, Maureen Puettmann of WoodLife Environmental Consultants and Phillip Steele with Mississippi State University.

The publication integrates findings across many previous reports generated by a consortium of 17 research institutions that have been involved in life cycle analysis of wood products for more than 15 years through the Consortium for Research on Renewable Industrial Materials, based at the UW. The recent biofuel life cycle research was funded with a grant from the U.S. Forest Service's Forest Products Laboratory.

For more information:

Lippke, 206-322-8205, office 206-543-8684, cell 206-931-7297, blippke@uw.edu

Oneil, UW faculty and executive director CORRIM, office 206-543-8684, eoneil@uw.edu

Gustafson, UW faculty, advanced biofuels such as ethanol from cellulose, 206-543-2790, pulp@uw.edu

Puettmann, CORRIM's consultant for reviewing life cycle data, 541-231-2627, maureen.puettmann@q.com

Suggested websites

Abstract and link to pdf of article http://www.mdpi.com/1999-4907/2/4/861/

Bruce Lippke http://www.cfr.washington.edu/SFRPublic/People/FacultyProfile.aspx?PID=11

EPA fact sheet "Greenhouse Gas Impacts of Expanded Renewable and Alternative Fuels Use" http://tinyurl.com/EPAFactSheetAltFuels

Consortium for Research on Renewable Industrial Materials http://www.corrim.org/

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>