Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon mitigation strategy uses wood for buildings first, bioenergy second

23.11.2011
Proposals to remove the carbon dioxide caused by burning fossil fuel from the atmosphere include letting commercially managed forests grow longer between harvests or not cutting them at all.

An article published in the journal Forests says, however, that Pacific Northwest trees grown and harvested sustainably, such as every 45 years, can both remove existing carbon dioxide from the air and help keep the gas from entering the atmosphere in the first place.

That's provided wood is used primarily for such things as building materials instead of cement and steel – which require more fossil fuels in their manufacture – and secondarily that wood wastes are used for biofuels to displace the use of fossil fuels.

"When it comes to keeping carbon dioxide out of the atmosphere, it makes more sense to use trees to recycle as much carbon as we can and offset the burning of fossil fuel than it does to store carbon in standing forests and continuing burning fossil fuels," said Bruce Lippke, University of Washington professor emeritus of forest resources.

Lippke is one of eight co-authors of the article in Forests. It is the first to comprehensively calculate using woody biomass for bioenergy in addition to using wood for long-lived products. The article focuses on the extra carbon savings that can be squeezed from harvesting trees if wood not suitable for long-term building materials is used for bioenergy. Such wood can come from the branches and other debris left after harvesting, materials thinned from stands or from plantations of fast-growing trees like willow.

For the article, the co-authors looked at selected bioenergy scenarios using wood from the U.S. Pacific Northwest, Southeast and Northeast.

They considered two ways of producing ethanol from woody biomass – gasification and fermentation – and used what's called life cycle analysis to tally all the environmental effects of gathering, processing and using the resulting fuels. Ethanol from woody biomass emits less greenhouse gas than an equivalent amount of gasoline, between 70 percent and a little over 100 percent less.

How much of a reduction depends on the process. Achieving slightly more than a 100 percent reduction in greenhouse gas emissions is possible, for example, using a fermentation process that both produces ethanol and generates enough electricity to offset the fossil fuel used in the fermentation process.

In contrast, producing and using corn ethanol to displace gasoline reduces greenhouse gas emissions 22 percent on average, according to the Environmental Protection Agency's fact sheet "Greenhouse Gas Impacts of Expanded Renewable and Alternative Fuels Use."

While biofuels from woody biomass are carbon friendly, Lippke cautions that the U.S. should not use tax breaks or other incentives that inadvertently divert wood to bioenergy that is better used for long-lived building materials and furniture.

"Substituting wood for non-wood building materials can displace far more carbon emissions than using the wood for biofuel," the article says. "This fact creates a hierarchy of wood uses that can provide the greatest carbon mitigation for each source of supply."

Lippke said using wood for products and bioenergy can be considered carbon neutral because the carbon dioxide trees absorb while growing eventually goes back to the atmosphere when, for instance, wood rots after building demolition or cars burn ethanol made from woody debris. With sustainably managed forests, that carbon dioxide is then absorbed by the growing trees awaiting the next harvest.

The co-authors aren't advocating that all forests be harvested, just the ones designated to help counter carbon dioxide in the atmosphere. Older forests, for instance, provide ecological values even though they absorb less carbon dioxide as they age.

In the article the authors also urge policymakers and citizens to consider not just carbon mitigation but also to find ways to weigh the importance of energy independence from fossil fuels when considering how to use woody biomass for bioenergy.

"Simply burning woody biomass to generate heat or electricity makes sense for carbon mitigation," he says, "But there's no energy independence gained," Lippke said. So carbon efficiency is only one part of the equation. Transportation fuels depend heavily on imported oil and therefore biofuels that replace them make additional contributions to the domestic economy, including energy independence and rural economic development, the authors said.

Other co-authors are Richard Gustafson and Elaine Oneil with the UW, Richard Venditti with North Carolina State University, Timothy Volk with the State University of New York, Leonard Johnson with the University of Idaho, Maureen Puettmann of WoodLife Environmental Consultants and Phillip Steele with Mississippi State University.

The publication integrates findings across many previous reports generated by a consortium of 17 research institutions that have been involved in life cycle analysis of wood products for more than 15 years through the Consortium for Research on Renewable Industrial Materials, based at the UW. The recent biofuel life cycle research was funded with a grant from the U.S. Forest Service's Forest Products Laboratory.

For more information:

Lippke, 206-322-8205, office 206-543-8684, cell 206-931-7297, blippke@uw.edu

Oneil, UW faculty and executive director CORRIM, office 206-543-8684, eoneil@uw.edu

Gustafson, UW faculty, advanced biofuels such as ethanol from cellulose, 206-543-2790, pulp@uw.edu

Puettmann, CORRIM's consultant for reviewing life cycle data, 541-231-2627, maureen.puettmann@q.com

Suggested websites

Abstract and link to pdf of article http://www.mdpi.com/1999-4907/2/4/861/

Bruce Lippke http://www.cfr.washington.edu/SFRPublic/People/FacultyProfile.aspx?PID=11

EPA fact sheet "Greenhouse Gas Impacts of Expanded Renewable and Alternative Fuels Use" http://tinyurl.com/EPAFactSheetAltFuels

Consortium for Research on Renewable Industrial Materials http://www.corrim.org/

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>