Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barley adapts to climate change

25.01.2012
The upsurge in droughts is one of the main consequences of climate change, and affects crops in particular.

However, Anabel Robredo, a biologist at the University of the Basque Country (UPV/EHU), has confirmed that in the case of barley at least, climate change itself is providing it with self-defence mechanisms to tackle a lack of water.

Climate change is in fact also responsible for a considerable increase in the concentration of CO2, a gas that, paradoxically, is providing this plant with certain characteristics enabling it to offset the effects of drought. Her thesis is entitled Mecanismos fisiológicos de respuesta de la cebada al impacto de la sequia y el elevado CO2: adaptación al cambio climático (Physiological Response Mechanisms of Barley to the impact of drought and elevated CO2: adaptation to climate change).

Various international publications have also echoed this research, the most recent being Environmental and Experimental Botany.

Basically, Robredo has analysed the effect that takes place in the barley as a result of the combination of two of the main consequences brought to us by climate change: the enriching of CO2 and drought. As the researcher explains, “the atmospheric concentration of this gas has increased considerably within the last few decades, and it is expected to increase much more. So we compared barley plants that grow in a CO2 concentration equal to the current (ambient) one with others cultivated in double the concentration, which is what we are expected to reach by the end of this century." The study was carried out through a progressive imposition of drought so it also determined the capacity of these plants to recover following the lack of irrigation, in an ambient CO2 concentration as well as in the one expected for the future.

More efficient use of water

When discussing plants in general, the effects of an elevated concentration of CO2 were already known. The bibliographical references quoted by Robredo show that this is in fact so, since among other things, this elevated concentration increases biomass, root growth and total leaf area, and alters net photosynthesis rates and efficiency in water use. The so-called stomatal conductance is one of the keys, explains the researcher: “Stomata are pores that plants have in their leaves, and it is through them that they carry out the water and air exchange. When a plant is subjected to a high level of CO2, it closes its stomata to a certain degree. This causes the water to escape less, which is translated into greater efficiency in its use.”

So a greater concentration of CO2 would appear to put the plants in an advantageous situation to address droughts. “If they use the water more slowly, they use it more efficiently and can grow over a longer period of time,” explains Robredo. At least this is what she has been able to confirm in the case of barley. The results show that even though drought is harmful, its effect on barley is less when combined with an elevated concentration of CO2. In comparison with a situation in which an ambient level of this gas exists, its increase causes leaf and soil water content to fall less, the rates of photosynthesis to be maintained for longer, growth to be greater and the assimilation of nitrogen and carbon to be less affected. The researcher does in fact explain the importance of maintaining the balance between the nitrogen and the carbon: “Both the take-up of carbon and the assimilation of nitrogen have increased in a balanced way.”

On the other hand, when irrigation is re-established in barley plants that have been through a drought, its effect has been seen to revert more rapidly to its original state under elevated CO2 conditions, in most of the parameters analysed.

It cannot be extrapolated

So, under future CO2 conditions, the negative repercussions of drought driven by climate change would be delayed further in comparison with the current concentration of this gas. In the case of barley this is so. However, can these results be extrapolated to other crops? As this researcher points out, it is not that simple: “You have to be very careful because plant species often respond very differently, even displaying the opposite. But what we can say is that most plant species tend to use water more efficiently in conditions of elevated CO2 and drought, and that they grow more.”

About the author

Anabel Robredo-Ruiz de Azua (Bilbao, 1976) is a graduate in Biological Sciences. She wrote up her thesis under the supervision of Dr. Alberto Muñoz Rueda (Professor of Plant Physiology) and Dr. Amaia Mena-Petite (Associate Professor), both from the Department of Plant Biology and Ecology of the Faculty of Science and Technology of the UPV/EHU. Today, Robredo belongs to PhD Research Personnel at the laboratory of Plant Physiology of this same department and faculty.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: CO2 CO2 concentration Climate change UPV/EHU crops plant species

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>