Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Barley adapts to climate change

The upsurge in droughts is one of the main consequences of climate change, and affects crops in particular.

However, Anabel Robredo, a biologist at the University of the Basque Country (UPV/EHU), has confirmed that in the case of barley at least, climate change itself is providing it with self-defence mechanisms to tackle a lack of water.

Climate change is in fact also responsible for a considerable increase in the concentration of CO2, a gas that, paradoxically, is providing this plant with certain characteristics enabling it to offset the effects of drought. Her thesis is entitled Mecanismos fisiológicos de respuesta de la cebada al impacto de la sequia y el elevado CO2: adaptación al cambio climático (Physiological Response Mechanisms of Barley to the impact of drought and elevated CO2: adaptation to climate change).

Various international publications have also echoed this research, the most recent being Environmental and Experimental Botany.

Basically, Robredo has analysed the effect that takes place in the barley as a result of the combination of two of the main consequences brought to us by climate change: the enriching of CO2 and drought. As the researcher explains, “the atmospheric concentration of this gas has increased considerably within the last few decades, and it is expected to increase much more. So we compared barley plants that grow in a CO2 concentration equal to the current (ambient) one with others cultivated in double the concentration, which is what we are expected to reach by the end of this century." The study was carried out through a progressive imposition of drought so it also determined the capacity of these plants to recover following the lack of irrigation, in an ambient CO2 concentration as well as in the one expected for the future.

More efficient use of water

When discussing plants in general, the effects of an elevated concentration of CO2 were already known. The bibliographical references quoted by Robredo show that this is in fact so, since among other things, this elevated concentration increases biomass, root growth and total leaf area, and alters net photosynthesis rates and efficiency in water use. The so-called stomatal conductance is one of the keys, explains the researcher: “Stomata are pores that plants have in their leaves, and it is through them that they carry out the water and air exchange. When a plant is subjected to a high level of CO2, it closes its stomata to a certain degree. This causes the water to escape less, which is translated into greater efficiency in its use.”

So a greater concentration of CO2 would appear to put the plants in an advantageous situation to address droughts. “If they use the water more slowly, they use it more efficiently and can grow over a longer period of time,” explains Robredo. At least this is what she has been able to confirm in the case of barley. The results show that even though drought is harmful, its effect on barley is less when combined with an elevated concentration of CO2. In comparison with a situation in which an ambient level of this gas exists, its increase causes leaf and soil water content to fall less, the rates of photosynthesis to be maintained for longer, growth to be greater and the assimilation of nitrogen and carbon to be less affected. The researcher does in fact explain the importance of maintaining the balance between the nitrogen and the carbon: “Both the take-up of carbon and the assimilation of nitrogen have increased in a balanced way.”

On the other hand, when irrigation is re-established in barley plants that have been through a drought, its effect has been seen to revert more rapidly to its original state under elevated CO2 conditions, in most of the parameters analysed.

It cannot be extrapolated

So, under future CO2 conditions, the negative repercussions of drought driven by climate change would be delayed further in comparison with the current concentration of this gas. In the case of barley this is so. However, can these results be extrapolated to other crops? As this researcher points out, it is not that simple: “You have to be very careful because plant species often respond very differently, even displaying the opposite. But what we can say is that most plant species tend to use water more efficiently in conditions of elevated CO2 and drought, and that they grow more.”

About the author

Anabel Robredo-Ruiz de Azua (Bilbao, 1976) is a graduate in Biological Sciences. She wrote up her thesis under the supervision of Dr. Alberto Muñoz Rueda (Professor of Plant Physiology) and Dr. Amaia Mena-Petite (Associate Professor), both from the Department of Plant Biology and Ecology of the Faculty of Science and Technology of the UPV/EHU. Today, Robredo belongs to PhD Research Personnel at the laboratory of Plant Physiology of this same department and faculty.

Amaia Portugal | EurekAlert!
Further information:

Further reports about: CO2 CO2 concentration Climate change UPV/EHU crops plant species

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>