Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Bar-coding” midges could help prevent spread of bluetongue in the UK

04.09.2008
Ecologists have developed a new technique for genetically “bar-coding” biting midges that could help prevent the spread of bluetongue – a serious animal disease – in the UK. Speaking at the British Ecological Society’s Annual Meeting at Imperial College, London, Jane DeGabriel of the University of Aberdeen will explain how the technique will plug a huge gap in our understanding of how midges might spread bluetongue in the UK.

Bluetongue is a serious disease affecting ruminants such as sheep and cattle. It was first detected in the UK in 2007 but has not yet affected Scotland. It can be spread by species of Culicoides biting midge present in the UK. European midges have been exposed to bluetongue and can spread the disease. Coupled with climate change, this means the disease poses a major threat to UK agriculture.

The species of midges present in the UK potentially differ in their ability to spread bluetongue, so predicting how the disease might spread depends on mapping the distribution of these species. DeGabriel’s new “bar-coding” system makes this possible for the first time.

According to DeGabriel: “The four species within the group Culicoides obsoletus that we are interested in cannot be distinguished visually. So we are using a genetic bar-coding approach to identify the midges to species level using molecular methods. We have developed a high-throughput genetic screening method to identify large sample sizes of midges to species level, both efficiently and cost-effectively.”

During 2007 and 2008, DeGabriel and her colleagues collected one million midges from light traps set up on 37 farms throughout Scotland, from the English border in the south to as far north as Thurso. Using the bar-coding technique they were then able to produce a detailed “midge map” of Scotland. This showed midge numbers and species varied both geographically and seasonally, reflecting differences in climate and habitat.

“This is the first large-scale study of the distribution and abundance of Scottish midge species. We found that all four species of midges were present in all areas of Scotland, but the relative numbers of each species differed between the trapping sites. We also found the mixture of species differed at individual sites at different times of the year. These differences between and within sites appear to be due to differences in climatic conditions and habitat. Our findings provide vital information for assessing the risk of bluetongue being transmitted in Scotland and the effects of climate change on the spread of this and other animal diseases,” DeGabriel explains.

“Given the introduction of bluetongue into England and the persistence of favourable climatic conditions such as the recent milder winters, this research is extremely urgent and important. Our results will help scientists and policy makers develop risk mitigation and management strategies for bluetongue and other animal diseases,” DeGabriel says.

Jane DeGabriel will present her full findings at 09:10 on Thursday 4 September 2008 to the British Ecological Society’s Annual Meeting at Imperial College, London.

Her research is being carried out under a Scottish Government grant to the University of Aberdeen, Advanced Pest Solutions Ltd and the Institute for Animal Health, Pirbright.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>