Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Bar-coding” midges could help prevent spread of bluetongue in the UK

04.09.2008
Ecologists have developed a new technique for genetically “bar-coding” biting midges that could help prevent the spread of bluetongue – a serious animal disease – in the UK. Speaking at the British Ecological Society’s Annual Meeting at Imperial College, London, Jane DeGabriel of the University of Aberdeen will explain how the technique will plug a huge gap in our understanding of how midges might spread bluetongue in the UK.

Bluetongue is a serious disease affecting ruminants such as sheep and cattle. It was first detected in the UK in 2007 but has not yet affected Scotland. It can be spread by species of Culicoides biting midge present in the UK. European midges have been exposed to bluetongue and can spread the disease. Coupled with climate change, this means the disease poses a major threat to UK agriculture.

The species of midges present in the UK potentially differ in their ability to spread bluetongue, so predicting how the disease might spread depends on mapping the distribution of these species. DeGabriel’s new “bar-coding” system makes this possible for the first time.

According to DeGabriel: “The four species within the group Culicoides obsoletus that we are interested in cannot be distinguished visually. So we are using a genetic bar-coding approach to identify the midges to species level using molecular methods. We have developed a high-throughput genetic screening method to identify large sample sizes of midges to species level, both efficiently and cost-effectively.”

During 2007 and 2008, DeGabriel and her colleagues collected one million midges from light traps set up on 37 farms throughout Scotland, from the English border in the south to as far north as Thurso. Using the bar-coding technique they were then able to produce a detailed “midge map” of Scotland. This showed midge numbers and species varied both geographically and seasonally, reflecting differences in climate and habitat.

“This is the first large-scale study of the distribution and abundance of Scottish midge species. We found that all four species of midges were present in all areas of Scotland, but the relative numbers of each species differed between the trapping sites. We also found the mixture of species differed at individual sites at different times of the year. These differences between and within sites appear to be due to differences in climatic conditions and habitat. Our findings provide vital information for assessing the risk of bluetongue being transmitted in Scotland and the effects of climate change on the spread of this and other animal diseases,” DeGabriel explains.

“Given the introduction of bluetongue into England and the persistence of favourable climatic conditions such as the recent milder winters, this research is extremely urgent and important. Our results will help scientists and policy makers develop risk mitigation and management strategies for bluetongue and other animal diseases,” DeGabriel says.

Jane DeGabriel will present her full findings at 09:10 on Thursday 4 September 2008 to the British Ecological Society’s Annual Meeting at Imperial College, London.

Her research is being carried out under a Scottish Government grant to the University of Aberdeen, Advanced Pest Solutions Ltd and the Institute for Animal Health, Pirbright.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>