Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ARS scientists identify genetic resistance to rice sheath blight

05.05.2010
Agricultural Research Service (ARS) scientists have identified sources of genetic resistance to sheath blight, a major disease affecting rice production worldwide.

Sheath blight, caused by the fungus Rhizoctonia solani, is a major disease of rice that affects yield and grain quality. Geneticist Anna McClung, director of the ARS Dale Bumpers National Rice Research Center in Stuttgart, Ark., and research leader of the Rice Research Unit in Beaumont, Texas, heads a group of ARS scientists examining the rice genome in search of genetic resistance to this serious disease.

Plant pathologist Yulin Jia and colleagues at Stuttgart had a breakthrough in their sheath blight mapping efforts when they identified and confirmed qShB9-2, the first genetic region they have found to have a major effect on controlling the disease.

In a related project, geneticist Georgia Eizenga at Stuttgart screened 73 wild rice species for signs of sheath blight resistance. Seven accessions showed promise, and Eizenga's team has crossed some of those accessions with domestic varieties to create new, resistant germplasm.

The Stuttgart scientists have also developed a standardized screening technique to help quickly and accurately detect sheath blight in seedlings. Called the "microchamber method," this technique uses 2-liter or 3-liter plastic bottles to create a humidity chamber to promote disease development. This allows the researchers to measure seedlings' disease reaction in just seven days, accelerating the process of identifying novel, resistant sources from cultivated and wild relatives of rice.

Meanwhile, in Beaumont, geneticist Shannon Pinson has been studying gene-mapping populations from recombinant inbred lines (RILs) of domestic rice cultivar "Lemont" and Chinese cultivar "TeQing." She found 18 chromosomal regions in these RILs with genes that can help rice plants resist damage from sheath blight, including the qShB9-2 genetic region confirmed by Jia. Two of the regions have shown a large, measurable effect on sheath blight resistance.

The scientists' studies can be found in Plant Disease, Molecular Genetics and Genomics, Frontiers of Agriculture in China, Theoretical Applied Genetics, Crop Science, Phytopathology and the Journal of Plant Registrations.

Read more about this and other rice research in the May/June 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). This research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Stephanie Yao | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>