Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ARS scientists identify genetic resistance to rice sheath blight

05.05.2010
Agricultural Research Service (ARS) scientists have identified sources of genetic resistance to sheath blight, a major disease affecting rice production worldwide.

Sheath blight, caused by the fungus Rhizoctonia solani, is a major disease of rice that affects yield and grain quality. Geneticist Anna McClung, director of the ARS Dale Bumpers National Rice Research Center in Stuttgart, Ark., and research leader of the Rice Research Unit in Beaumont, Texas, heads a group of ARS scientists examining the rice genome in search of genetic resistance to this serious disease.

Plant pathologist Yulin Jia and colleagues at Stuttgart had a breakthrough in their sheath blight mapping efforts when they identified and confirmed qShB9-2, the first genetic region they have found to have a major effect on controlling the disease.

In a related project, geneticist Georgia Eizenga at Stuttgart screened 73 wild rice species for signs of sheath blight resistance. Seven accessions showed promise, and Eizenga's team has crossed some of those accessions with domestic varieties to create new, resistant germplasm.

The Stuttgart scientists have also developed a standardized screening technique to help quickly and accurately detect sheath blight in seedlings. Called the "microchamber method," this technique uses 2-liter or 3-liter plastic bottles to create a humidity chamber to promote disease development. This allows the researchers to measure seedlings' disease reaction in just seven days, accelerating the process of identifying novel, resistant sources from cultivated and wild relatives of rice.

Meanwhile, in Beaumont, geneticist Shannon Pinson has been studying gene-mapping populations from recombinant inbred lines (RILs) of domestic rice cultivar "Lemont" and Chinese cultivar "TeQing." She found 18 chromosomal regions in these RILs with genes that can help rice plants resist damage from sheath blight, including the qShB9-2 genetic region confirmed by Jia. Two of the regions have shown a large, measurable effect on sheath blight resistance.

The scientists' studies can be found in Plant Disease, Molecular Genetics and Genomics, Frontiers of Agriculture in China, Theoretical Applied Genetics, Crop Science, Phytopathology and the Journal of Plant Registrations.

Read more about this and other rice research in the May/June 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). This research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Stephanie Yao | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>