Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

April grafting optimal for Fraser fir

03.01.2011
Spring grafting time proves most successful to create disease-resistant stock

Christmas trees provide a significant source of revenue in southern Appalachia, resulting in millions of dollars in sales during the holiday buying season. The most popular species in the region is fraser fir, appreciated for its fragrance and consumer-friendly traits such as soft needles, strong branches, exceptional needle retention, and natural Christmas tree shape.

Frasers, indigenous to isolated high-elevation mountains in southwestern Virginia, western North Carolina, and eastern Tennessee, are under attack by a pathogen called Phytophthora cinnamom, an insidious adversary that causes root rot, kills seedlings, and threatens serious economic losses for the region's Christmas tree industry. "Once a growing site is infested, the pathogen is nearly impossible to eradicate. Fir seedlings often die within 2 or 3 weeks from infection", noted John Frampton, a professor in the Department of Forestry and Environmental Resources at North Carolina State University.

To develop planting stock that is resistant to or tolerant of Phytophthora cinnamomi, some growers in the southern Appalachian Mountains are turning to grafting practices, predominantly grafting fraser fir scions onto rootstocks of resistant momi or turkish fir. To aid growers in the region seeking effective grafting techniques, Frampton and his team designed a study, implemented by graduate student Haley Hibbert-Frey, to compare success rates of the traditional April grafting time with eight summer/early fall grafting dates. The study, published in HortScience, contains important recommendations for tree growers.

Fraser fir is usually grafted in April when the rootstock and scion are dormant. But spring is a busy time for growers, who would welcome the flexibility of performing grafting at other times of the year (e.g., late summer or early fall). The NCSU study compared success and growth of grafting fresh fraser fir scions onto turkish fir rootstocks during the traditional April grafting window with eight biweekly grafting dates from mid-July through mid-October. The scientists also assessed the effect of shade and irrigation treatments on graft success and growth and evaluated grafting during the mid-July through mid-October season using dormant fraser fir scions collected during April and stored at °C.

The team concluded that the effect of grafting date was significant for graft success. Grafting during April when scions were dormant and rootstocks were just becoming active yielded a noteworthy 95% success rate; graft success was significantly lower for the first three summer grafting dates and was unsuccessful from August 24–October 20. "April graft success was 95% but when grafting fresh scions in summer/fall, graft success decreased from 52% in July to 0% in October. To ensure optimal grafting success, grafting should be performed in the late winter or early spring when scions are dormant and the rootstocks are becoming active", recommended Frampton.

The experiment results showed that shade improved summer graft success (52% with shade, 38% without), while irrigation did not significantly affect graft success or subsequent growth. In a supplemental storage study, grafting of stored scion material in summer/early fall was not successful (less than 1%). "Until more successful techniques can be developed, it is prudent to graft fraser fir in early spring with freshly collected dormant scion material", the researchers concluded.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/4/617

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

Further reports about: ASHS Christmas tree Fraser fir HortScience Horticultural Science Phytophthora

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>