Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

April grafting optimal for Fraser fir

03.01.2011
Spring grafting time proves most successful to create disease-resistant stock

Christmas trees provide a significant source of revenue in southern Appalachia, resulting in millions of dollars in sales during the holiday buying season. The most popular species in the region is fraser fir, appreciated for its fragrance and consumer-friendly traits such as soft needles, strong branches, exceptional needle retention, and natural Christmas tree shape.

Frasers, indigenous to isolated high-elevation mountains in southwestern Virginia, western North Carolina, and eastern Tennessee, are under attack by a pathogen called Phytophthora cinnamom, an insidious adversary that causes root rot, kills seedlings, and threatens serious economic losses for the region's Christmas tree industry. "Once a growing site is infested, the pathogen is nearly impossible to eradicate. Fir seedlings often die within 2 or 3 weeks from infection", noted John Frampton, a professor in the Department of Forestry and Environmental Resources at North Carolina State University.

To develop planting stock that is resistant to or tolerant of Phytophthora cinnamomi, some growers in the southern Appalachian Mountains are turning to grafting practices, predominantly grafting fraser fir scions onto rootstocks of resistant momi or turkish fir. To aid growers in the region seeking effective grafting techniques, Frampton and his team designed a study, implemented by graduate student Haley Hibbert-Frey, to compare success rates of the traditional April grafting time with eight summer/early fall grafting dates. The study, published in HortScience, contains important recommendations for tree growers.

Fraser fir is usually grafted in April when the rootstock and scion are dormant. But spring is a busy time for growers, who would welcome the flexibility of performing grafting at other times of the year (e.g., late summer or early fall). The NCSU study compared success and growth of grafting fresh fraser fir scions onto turkish fir rootstocks during the traditional April grafting window with eight biweekly grafting dates from mid-July through mid-October. The scientists also assessed the effect of shade and irrigation treatments on graft success and growth and evaluated grafting during the mid-July through mid-October season using dormant fraser fir scions collected during April and stored at °C.

The team concluded that the effect of grafting date was significant for graft success. Grafting during April when scions were dormant and rootstocks were just becoming active yielded a noteworthy 95% success rate; graft success was significantly lower for the first three summer grafting dates and was unsuccessful from August 24–October 20. "April graft success was 95% but when grafting fresh scions in summer/fall, graft success decreased from 52% in July to 0% in October. To ensure optimal grafting success, grafting should be performed in the late winter or early spring when scions are dormant and the rootstocks are becoming active", recommended Frampton.

The experiment results showed that shade improved summer graft success (52% with shade, 38% without), while irrigation did not significantly affect graft success or subsequent growth. In a supplemental storage study, grafting of stored scion material in summer/early fall was not successful (less than 1%). "Until more successful techniques can be developed, it is prudent to graft fraser fir in early spring with freshly collected dormant scion material", the researchers concluded.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/4/617

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

Further reports about: ASHS Christmas tree Fraser fir HortScience Horticultural Science Phytophthora

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>