Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appellation d’origine contrôlée Measuring greenhouse gases in wine

02.12.2008
In order to investigate the greenhouse gas effect in Europe, you have to measure the concentrations of CO2 from fossil fuels at different places all over the continent. You can do this with 14C tests of air samples, but the same types of measurements can also be carried out on plants that have absorbed CO2.

To that end you need plant material that you know comes from a specific region and also which year it grew in. Wine is the ideal research material, thought researchers from the Centre for Isotope Research (CIO) of the University of Groningen.

CO2 in the atmosphere can come from various sources. Humans and animals breathe it out, it comes out of the earth when organic material decays, and it is also created by burning fossil fuels like coal, petrol and natural gas. CO2 formed in this way contributes to the strengthening of the greenhouse effect, and thus to a warmer climate. However, part of it is absorbed by plants that convert it with the help of sunlight into sugars.

Wine grape
The alcohol in wines is the result of the fermentation of plant sugars in the wine grape. The carbon atoms in the alcohol molecule can be directly traced back to the carbon atom in CO2. By analysing the amount of carbon-14 (14C) in the alcohol, you can find out what the percentage of CO2 from fossil fuels was in the atmosphere when the grapes were ripening.
Radioactive decay
The scientific basis for this is the same as for 14C dating for age. Carbon-14 is a radioactive form of carbon that occurs everywhere in nature in minute traces. In dead material, this 14C slowly disappears due to radioactive decay. Fossil fuels are millions of years old so all of the 14C that they once contained has disappeared in the meantime. CO2 deriving from fossil fuels can thus be identified easily by the absence of 14C.
Regional map
Wine is the ideal agricultural product for conducting this type of research. Better quality bottles of wine state on the label the year that the grapes were harvested and the region they come from. With the help of colleagues in Europe, and also just via off-licences, the researchers obtained 160 bottles of wine from different years and from different European countries and regions. ‘On this basis we could create a wonderful regional map of the European use of fossil fuels for a number of years’, says researcher Sanne Palstra of CIO. Most helpful was the contact with a wine-grower from the Pfalz in Germany, who contributed a series that resulted in measurements stretching back to 1975.
Supplement
The research revealed that wine alcohol can definitely be used to derive trends in the amount of fossil fuel CO2 in the atmosphere in previous years. Palstra: ‘Analysing the 14C in wine alcohol is an excellent supplement to the current air measurements. Before we can convert the measured amounts of CO2 back into the amount of fossil fuels burned, however, we need information about air currents. That has been acquired with the help of a German colleague. Atmospheric transport can vary significantly from year to year, so detailed regional information is very important.’
Popular
The research will be continued in cooperation with Wageningen University, because in addition to wine, other agricultural products or plants can also be used. However, it’s doubtful whether the researchers will be as popular with them as they are now at their institute. They only needed 100 ml from each bottle for their wine research and the opened bottles were shared with their colleagues, who toasted the research with them at home.

Jos Speekman | alfa
Further information:
http://www.rug.nl

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>