Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appellation d’origine contrôlée Measuring greenhouse gases in wine

02.12.2008
In order to investigate the greenhouse gas effect in Europe, you have to measure the concentrations of CO2 from fossil fuels at different places all over the continent. You can do this with 14C tests of air samples, but the same types of measurements can also be carried out on plants that have absorbed CO2.

To that end you need plant material that you know comes from a specific region and also which year it grew in. Wine is the ideal research material, thought researchers from the Centre for Isotope Research (CIO) of the University of Groningen.

CO2 in the atmosphere can come from various sources. Humans and animals breathe it out, it comes out of the earth when organic material decays, and it is also created by burning fossil fuels like coal, petrol and natural gas. CO2 formed in this way contributes to the strengthening of the greenhouse effect, and thus to a warmer climate. However, part of it is absorbed by plants that convert it with the help of sunlight into sugars.

Wine grape
The alcohol in wines is the result of the fermentation of plant sugars in the wine grape. The carbon atoms in the alcohol molecule can be directly traced back to the carbon atom in CO2. By analysing the amount of carbon-14 (14C) in the alcohol, you can find out what the percentage of CO2 from fossil fuels was in the atmosphere when the grapes were ripening.
Radioactive decay
The scientific basis for this is the same as for 14C dating for age. Carbon-14 is a radioactive form of carbon that occurs everywhere in nature in minute traces. In dead material, this 14C slowly disappears due to radioactive decay. Fossil fuels are millions of years old so all of the 14C that they once contained has disappeared in the meantime. CO2 deriving from fossil fuels can thus be identified easily by the absence of 14C.
Regional map
Wine is the ideal agricultural product for conducting this type of research. Better quality bottles of wine state on the label the year that the grapes were harvested and the region they come from. With the help of colleagues in Europe, and also just via off-licences, the researchers obtained 160 bottles of wine from different years and from different European countries and regions. ‘On this basis we could create a wonderful regional map of the European use of fossil fuels for a number of years’, says researcher Sanne Palstra of CIO. Most helpful was the contact with a wine-grower from the Pfalz in Germany, who contributed a series that resulted in measurements stretching back to 1975.
Supplement
The research revealed that wine alcohol can definitely be used to derive trends in the amount of fossil fuel CO2 in the atmosphere in previous years. Palstra: ‘Analysing the 14C in wine alcohol is an excellent supplement to the current air measurements. Before we can convert the measured amounts of CO2 back into the amount of fossil fuels burned, however, we need information about air currents. That has been acquired with the help of a German colleague. Atmospheric transport can vary significantly from year to year, so detailed regional information is very important.’
Popular
The research will be continued in cooperation with Wageningen University, because in addition to wine, other agricultural products or plants can also be used. However, it’s doubtful whether the researchers will be as popular with them as they are now at their institute. They only needed 100 ml from each bottle for their wine research and the opened bottles were shared with their colleagues, who toasted the research with them at home.

Jos Speekman | alfa
Further information:
http://www.rug.nl

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>