Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abrupt global warming could shift monsoon patterns, hurt agriculture

15.06.2009
At times in the distant past, an abrupt change in climate has been associated with a shift of seasonal monsoons to the south, a new study concludes, causing more rain to fall over the oceans than in the Earth's tropical regions, and leading to a dramatic drop in global vegetation growth.

If similar changes were to happen to the Earth's climate today as a result of global warming – as scientists believe is possible - this might lead to drier tropics, more wildfires and declines in agricultural production in some of the world's most heavily populated regions.

The findings were based on oxygen isotopes in air from ice cores, and supported by previously published data from ancient stalagmites found in caves. They will be published Friday in the journal Science by researchers from Oregon State University, the Scripps Institution of Oceanography and the Desert Research Institute in Nevada. The research was supported by the National Science Foundation.

The data confirming these effects were unusually compelling, researchers said.

"Changes of this type have been theorized in climate models, but we've never before had detailed and precise data showing such a widespread impact of abrupt climate change," said Ed Brook, an OSU professor of geosciences. "We didn't really expect to find such large, fast environmental changes recorded by the whole atmosphere. The data are pretty hard to ignore."

The researchers used oxygen measurements, as recorded in air bubbles in ice cores from Antarctica and Greenland, to gauge the changes taking place in vegetation during the past 100,000 years. Increases or decreases in vegetation growth can be determined by measuring the ratio of two different oxygen isotopes in air.

They were also able to verify and confirm these measurements with data from studies of ancient stalagmites on the floors of caves in China, which can reveal rainfall levels over hundreds of thousands of years.

"Both the ice core data and the stalagmites in the caves gave us the same signal, of very dry conditions over broad areas at the same time," Brook said. "We believe the mechanism causing this was a shift in monsoon patterns, more rain falling over the ocean instead of the land. That resulted in much lower vegetation growth in the regions affected by these monsoons, in what is now India, Southeast Asia and parts of North Africa."

Previous research has determined that the climate can shift quite rapidly in some cases, in periods as short as decades or less. This study provides a barometer of how those climate changes can affect the Earth's capacity to grow vegetation.

"Oxygen levels and its isotopic composition in the atmosphere are pretty stable, it takes a major terrestrial change to affect it very much," Brook said. "These changes were huge. The drop in vegetation growth must have been dramatic."

Observations of past climatic behavior are important, Brook said, but not a perfect predictor of the impact of future climatic shifts. For one thing, at times in the past when some of these changes took place, larger parts of the northern hemisphere were covered by ice. Ocean circulation patterns also can heavily influence climate, and shift in ways that are not completely understood.

However, the study still points to monsoon behavior being closely linked to climate change.

"These findings highlight the sensitivity of low-latitude rainfall patterns to abrupt climate change in the high–latitude north," the researchers wrote in their report, "with possible relevance for future rainfall and agriculture in heavily-populated monsoon regions."

Ed Brook | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>