Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A nematode and fungus team up to damage soybean

18.06.2014

Together with an international consortium, scientist at the German Julius-Kühn-Institute publishes model of the damage potential of Sudden-Death-Syndrome in PlosOne

For years a disease complex of a plant-parasitic nematode and fungal pathogen has damaged soybean fields in the Midwest of the USA. Recently Dr. Andreas Westphal of the Julius-Kühn-Institute (JKI) and his American collaborator Dr. Lijuan Xing provided mathematical evidence for the synergistic nature of the interaction of Heterodera glycines and Fusarium virguliforme (Xing and Westphal, 2013, JPDP 120:209-217). Crop rotation offers no remedy against the teamed up pathogens. Now, the international author group quantified the specific role of the two pathogens in disease severity. This report was published on June 16th in the open-access journal PLOS ONE and is available online http://dx.plos.org/10.1371/


Canopy view of diseased and healthy soybean leaves.

Photo: A.Westphal/Julius-Kühn-Institute


Microplots at the time of rating showing differences in canopy health.

Photo: A.Westphal/Julius-Kühn-Institute

journal.pone.0099529.

In collaboration with researchers from Australia, China and the US, microplot studies were conducted in Indiana. “The data were used to model the role of the fungal pathogen and the nematode quantitatively when causing the disease “, reports Westphal. This type of information enables us to predict the occurrence of sudden death syndrome and the severity of the disease.

... more about:
»Fusarium »JKI »Kühn-Institut »Plant »damage »death »fungi »nematode »soybean

“We gained insight how this important disease complex functions, while severely damaging the soybean-plants. In addition we developed new detection and quantification methods. These methods are critical for investigating and exploiting efficient management strategies of this still spreading disease“, summarizes Westphal.

Background information on the experiment design:

Tubes of 45-cm diameter were inserted perpendicular into the ground to provide the experimental context under field conditions. The plots were then infested with fungi and nematodes alone or in combination. Starting at the onset of disease, disease severity was monitored in the differently treated plots. The amount of the fungus at planting and in diseased plants was determined by a molecular quantification method called rtPCR using newly developed detection sets with specifically designed Primers.

The Australian collaborator conducted the extraction of DNA from large amounts of soil (500 g) using a method currently only available in his laboratory. The US group conducted the molecular detection of the fungus. Nematode population densities were determined by extracting and counting. A response matrix using the amounts of the pathogens as independents and the amount of disease as dependent were developed. In addition, such matrix was also used to describe the relation between the amounts of disease parameters and yield.

Author:
Dr. Andreas Westphal
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants
Institute for Plant Protection in Field Crops and Grassland
Messeweg 11-12
D-38104 Braunschweig
Germany
E-Mail: andreas.westphal@jki.bund.de

Stefanie Hahn | idw - Informationsdienst Wissenschaft
Further information:
http://www.jki.bund.de

Further reports about: Fusarium JKI Kühn-Institut Plant damage death fungi nematode soybean

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>