Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Zinc stannate nanostructures: growing a highly useful semiconductor

This timely review focuses on the synthesis of zinc stannate (zinc tin oxide: ZTO) nanostructures by the hydrothermal method, as well as the physical properties and applications of different zinc stannate nanostructures in solar cells, gas sensors, and photocatalysts.
The review is published in March 2011 in the journal Science and Technology of Advanced MaterialsVol. 12(2011) p. 013004. Itis presented by Sunandan Baruah and Joydeep Dutta from the Asian Institute of Technology, Klong Luang, Thailand.

Binary semiconducting oxide nanostructures, such as zinc oxide and titanium oxide, are widely used in sensors and catalysts.

However, ternary semiconducting oxide nanostructures, which show higher electrical conductivity and are more stable than the binary type, are increasingly in demand for specific applications due to their particular physical properties. In contrast to conventional ‘top-down’ processes involving physically breaking large macroscopic materials into nanoparticles, the chemically based ‘self-organization’ approach offers an inexpensive and flexible means of precisely controlling the size, crystal structure and optoelectronic properties of semiconducting oxide nanostructures, which is crucial for the use of ZTO in specific applications.

ZTO nanostructures can be produced using a variety of methods including thermal evaporation, high-temperature calcination, mechanical grinding, sol-gel synthesis, hydrothermal reaction, and ion-exchange reaction. Different methods produce different ratios of ZTO oxides and impurities, expressed in alternative crystal structures. The authors describe the pertinent features of the hydrothermal growth method for synthesizing ZTO, including high purity of the stable zinc orthostannate Zn2SnO4 and the accompanying ‘cubic spinel’ crystal structure. Moreover, hydrothermal growth is an attractive and relatively simple method since crystal growth occurs at mild temperatures in water.

Typical hydrothermal growth of ZTO nanostructures consists of using an aqueous mixture of a zinc salt, such as zinc nitrate or zinc chloride, and stannic chloride. This mixture is then reduced at 200-250 °C in sodium hydroxide or ammonium hydroxide in a high-pressure environment. Various methods for hydrothermal growth of ZTO nanostructures are detailed by the authors, with varying end products in terms of crystal structure and ‘phase composition’ – amounts of the particular oxides produced.

The physical properties of ZTO depend on the method used for their synthesis. ZTO is a ‘wide-gap’ semiconductor with a bandgap of around 3.6 eV, but the precise bandgap energy depends on the conditions of synthesis, which might result in quantum confinement effects arising from the small size of the nanostructures. Controlling the photoelectrochemical properties of ZTO has practical importance, and relating the optical and electronic properties of ZTO with the composition and crystal structure can pave the way for applications of other complex oxides.

The authors describe industrial applications arising from the photoelectrochemical properties of ZTO. Firstly, as a photocatalyst ZTO can be used for degrading harmful pesticides from ground water; secondly the porous nanostructures are ideal for gas sensing as they offer high surface to volume ratios; and thirdly ZTO has potential in the field of dye-sensitized solar cells, an economically plausible alternative to conventional solar cells. Given that only a few morphologies have been reported, the authors conjecture that within the next decade ZTO nanostructures will find uses in further industrial applications.

This review contains 131 references and 22 figures and provides an invaluable source of up-to-date information for newcomers and experts in this exciting area of research.

Related information:
[1] Sunandan Baruah and Joydeep Dutta, Zinc stannate nanostructures: hydrothermal synthesis, Sci. Technol. Adv. Mater.12 (2011) 013004
[2] Center of Excellence in Nanotechnology, School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Pathumthani 12120, Thailand

Media contacts:
National Institute for Materials Science, Tsukuba, Japan
Tel. +81-(0)29-859-2494

Robin Bisson | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>