Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays create a window on glass formation

17.04.2012
First ever visualization of how powder becomes molten glass could lead to greener manufacture at lower temperatures

Scientists have for the first time visualised the transformation of powder mixtures into molten glass. A better understanding of this process will make it possible to produce high quality glass at lower temperatures, leading to significant energy savings in industrial glass manufacturing. The results are published in the Journal of the American Ceramic Society.


This is an image showing the reaction between a grain of sodium carbonate (red) and two grains of silica (blue and yellow) observed at various temperatures and from different angles. These reactions produced sodium silicates, the precursors of glass. Note the movement of the grain of sodium carbonate which successively attaches to each of its neighbors. These movements favor progression of the reaction. The grain of sand measures about 100 micrometers across. Credit: The American Ceramic Society

The team of scientists was led by Emmanuelle Gouillart from the joint research unit between CNRS and Saint Gobain, a global glass manufacturer, and included scientists from the Universities of Toulouse and Grenoble, INRIA Saclay and the European Synchrotron Radiation Facility (ESRF) in Grenoble.

Glass is one of the oldest man-made materials, use of which spread during ancient Egyptian and Roman cultures. A non-crystalline amorphous material, it is produced by the fusion of crystalline powder mixtures heated to high temperatures. These ingredients are quartz sand (silica, SiO2), sodium and calcium carbonates (Na2CO3, CaCO3), and minor more specific additives.

In industrial foundries, the powder mixture is heated to about 1500°C and kept at this elevated temperature for many days to eliminate bubbles and unmolten grains. This consumes a lot of energy and one of the current industrial challenges is obtaining glass of good quality at lower temperatures. For example, the global glass industry's energy consumption (86.5 TWh in 2005) compares with the entire electricity production of the Netherlands (108 TWh in 2008).

An individual grain of silica normally melts at very high temperatures (1700°C). Adding carbonates triggers chemical reactions that lower this temperature. However, the interplay between the geometry of the grains and the rate of chemical reactions during the early stages of the melting which starts already well below 1000°C, have remained a mystery to date.

The scientists set out to understand what exactly happens at the different stages of the transformation from powder to molten glass. For their experiment, they used mixtures of raw materials similar to that for making industrial window glass: two-thirds silica sand and one-third of sodium and calcium carbonates.

To make visible chemical reactions between individual grains, the scientists used X-ray microtomography, a technique allowing visualising in real time changes in shape and positions of all grains in a given volume. These changes are probed by a fine, intense beam of X-rays sent through the sample. Like a three-dimensional "frame by frame" sequence - tiny variations of the transmitted X-ray intensity are recorded when sand and carbonate grains start to react chemically, changing their shapes and transforming themselves into molten glass. "At the ESRF, we can take a microtomography image with a spatial resolution of 1.6 micrometres every few seconds. Observing fast changes with a high spatial resolution deep inside an oven held at close to 1000°C is impossible without X-rays", says Marco Di Michiel from the ESRF.

The sequences of microtomography images confirmed the importance of good contact between grains of different substances, as it is these contacts which determine whether or not the mixture turns into liquid glass. For example, a calcium carbonate grain can either incorporate itself into the highly reactive amorphous liquid or remain a crystalline defect, depending on the presence or absence of such contacts. The researchers were surprised by the high reactivity of sodium carbonate when still solid: these grains move just before the melting begins which increases the number of contacts with other grains and facilitates the reactions.

By merging hundreds of X-ray tomography images, the scientists produced a video sequence visualising how different grains in the mixture move and fuse, one after the other, into molten glass as the temperature rose from 750°C to 930°C. "I have been working on these processes for many years, and it was absolutely fascinating to see like in a movie what happens at the onset of the powder/glass transition", says Emmanuelle Gouillart.

The scientists now wish to vary the sizes of the grains and the way in which they ramp up the temperature. In the long term, these fundamental studies will tell us how to reduce the number of defects produced at the start of the glass formation process, and help to find faster and less energy consuming manufacturing processes. "We also wish to make X-ray imaging methods and data analyses a routine visualisation tool for reactive granular mixtures. These are not only used in the manufacture of glass but also of other materials, and I see a huge industrial potential for optimising these processes", concludes Emmanuelle Gouillart.

Reference:

E. Gouillart et al., In-situ synchrotron microtomography reveals multiple reaction pathways during soda-lime glass synthesis, Journal of the American Ceramic Society 2012

Claus Habfast | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>