Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015

Scientists at Japan’s Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications. The paper was recently published in Science and Technology of Advanced Materials.

Scientists first reported carbon nanotubes in the early 1990s. Since then, these tiny cylinders have been part of the quest to reduce the size of technological devices and their components. Carbon nanotubes (CNTs) have very desirable properties.


Carbon nanotubes wrapped in polymer dispersants are used in many fields, including biotechnology and energy

They are 100 times stronger than steel and one-sixth its weight. They have several times the electrical and thermal conductivity of copper. And they have almost none of the environmental or physical degradation issues common to most metals, such as thermal contraction and expansion or erosion.

CNTs have a tendency to aggregate, forming “clumps” of tubes. To utilize their outstanding properties in applications, they need to be dispersed. But they are insoluble in many liquids, making their even dispersion difficult.

Scientists at Japan’s Kyushu University developed a technique that “exfoliates” aggregated clumps of CNTs and disperses them in solvents. It involves wrapping the tubes in a polymer using a bond that does not involve the sharing of electrons. The technique is called non-covalent polymer wrapping.

Whereas sharing electrons through covalent polymer wrapping leads to a more stable bond, it also changes the intrinsic desirable properties of the carbon nanotubes. Non-covalent wrapping is thus considered superior in most cases because it causes minimum damage to the tubes.

The scientists, Dr. Tsuyohiko Fujigaya and Dr. Naotoshi Nakashima, conducted a research review to analyze the various approaches of polymer wrapping and to summarize the applications in which polymer-wrapped carbon nanotubes can be used. Their review has been published in Science and Technology of Advanced Materials (16-2 p24802, 2015).

They found that a wide variety of polymers can be used for the non-covalent wrapping of carbon nanotubes. Recently, many polymer dispersants have indeed been developed that not only disperse the CNTs but also add new functions to them. These polymer dispersants are now widely recognized and utilized in many fields, including biotechnology and energy applications.

CNTs that are stably wrapped with biocompatible materials are very attractive in biomedicine, for example, due to their incredible ability to pass biological barriers without generating an immune response. There is thus high potential for polymer-wrapped CNTs in the area of drug delivery.

Also, wrapping carbon nanotubes in polymers improves their photovoltaic functions in solar cells, for example, when the polymers function like a light-receiving pigment.

Because the designs of polymers can be readily tailored, it is expected that the functionality of polymer-wrapped CNTs will be further expanded and that novel applications using them will be developed.

For more information, contact

Tsuyohiko Fujigaya
The World Premier International Research Center Initiative
International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
Kyushu University
E-mail: fujigaya-tcm@mail.cstm.kyushu-u.ac.jp

More information about the research paper:
Sci. Technol. Adv. Mater. Vol. 16 (2015) 024802
http://iopscience.iop.org/1468-6996/16/2/024802/article
doi:10.1088/1468-6996/16/2/ 024802
Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants
Tsuyohiko Fujigaya and Naotoshi Nakashima

Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications
http://iopscience.iop.org/1468-6996

For more information about the journal Science and Technology of Advanced Materials, contact

Mikiko Tanifuji
Publishing Director
Science and Technology of Advanced Materials
Email: TANIFUJI.Mikiko@nims.go.jp


Associated links
Read the paper "Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants"

Journal information

Sci. Technol. Adv. Mater. Vol. 16 (2015) 024802
http://iopscience.iop.org/1468-6996/16/2/024802/article
doi:10.1088/1468-6996/16/2/ 024802
Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants
Tsuyohiko Fujigaya and Naotoshi Nakashima

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>