Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Best of Both Worlds: Hybrid Approach Sheds Light on Crystal Structure Solution

12.12.2012
Researchers combine computational and experimental methods to understand the arrangement of atoms in solids
Understanding the arrangement of atoms in a solid — one of solids’ fundamental properties — is vital to advanced materials research. For decades, two camps of researchers have been working to develop methods to understand these so-called crystal structures. “Solution” methods, championed by experimental researchers, draw on data from diffraction experiments, while “prediction” methods of computational materials scientists bypass experimental data altogether.

While progress has been made, computational scientists still cannot make crystal structure predictions routinely. Now, drawing on both prediction and solution methods, Northwestern University researchers have developed a new code to solve crystal structures automatically and in cases where traditional experimental methods struggle.

Key to the research was integrating evidence about solids’ symmetry — the symmetrical arrangement of atoms within the crystal structure — into a promising computational model.

“We took the best of both worlds,” said Chris Wolverton, professor of materials science and engineering at Northwestern’s McCormick School of Engineering and expert in computational materials science. “Computational materials scientists had developed a great optimization algorithm, but it failed to take into account some important facts gathered by experimentalists. By simply integrating that information into the algorithm, we can have a much fuller understanding of crystal structures.”

The resulting algorithm could allow researchers to understand the structures of new compounds for applications ranging from hydrogen storage to lithium-ion batteries.

A paper describing the research, “A Hybrid Computational-Experimental Approach for Automated Crystal Structure Solution,” was published November 25 in the journal Nature Materials.

While both computational and experimental researchers have made strides in determining the crystal structure of materials, their efforts have some limitations. Diffraction experiments are labor-intensive and have high potential for human error, while most existing computational approaches neglect potentially valuable experimental input.

When computational and experimental research is combined, however, those limitations can be overcome, the researchers found.

In their research, the Northwestern authors seized onto an important fact: that while the precise atomic arrangements for a given solid may be unknown, experiments have revealed the symmetries present in tens of thousands of known compounds. This database of information is useful in solving the structures of new compounds.

The researchers were able to revise a useful model — known as the genetic algorithm, which mimics the process of biological evolution — to take those data into account.

In the paper, the researchers used this technique to analyze the atomic structure of four technologically relevant solids whose crystal structure has been debated by scholars — magnesium imide, ammonia borane, lithium peroxide, and high-pressure silane — and demonstrated how their method would solve their atomic structures.

Bryce Meredig (PhD ’12) was the paper’s lead author.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>