Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The wonders of graphene on display

05.07.2011
Graphene, discovered in 2004 at The University of Manchester by Professor Andre Geim and Professor Kostya Novoselov, is one of the world's most versatile materials, and is already being used in such varied applications as touch screens, transistors and aircraft wings.

Researchers from the University are presenting the vast potential of the wonder material at the Royal Society's annual Summer Science Exhibition which opens today (5 July 2010).

The display aims to tell the remarkable story of the discovery of graphene, and how Professors Geim and Novoselov realised the full significance of their work – culminating in the award of the 2010 Nobel Prize for Physics.

The pair, who have worked together for more than a decade since Professor Novoselov was Professor Geim's PHD student, used to devote every Friday evening to 'out of the box' experiments not directly linked to their main research topics.

One Friday, they used Scotch tape to peel away layers of carbon from a piece of graphite, and were left with a single atom thick, two dimensional film of carbon – graphene.

Visitors will be given the chance to learn what a two dimensional material looks like using simple models, and to make graphene themselves.

In an interactive display called the Virtual Microscope visitors will be able to see real images of graphene, originally obtained in one of the world's most advanced Transmission Electron Microscopes (TEM), the Daresbury SuperSTEM.

The high magnifications that can be achieved in this instrument allow direct observation of the atomic lattice of graphene, in its perfect state, but also with defects and foreign atoms, unintentionally or deliberately introduced. The SuperSTEM images have been implemented in the Virtual Microscope in a way that allows zooming into areas of interest like in the real instrument.

The material, which resembles a "chicken wire" like structure and was previously thought to be unstable in its free form, is very strong, transparent and highly conductive.

Many of its properties are unique or far superior to those in other materials, which make it such an exciting new material to study.

Charge carriers in graphene appear to have no mass and can travel very large distances without being scattered. This makes it a good testing ground for interesting quantum effects and gives it many applications for fast electronics. It is extremely transparent and being such a good electrical conductor makes it an ideal transparent electrode in LCD displays and solar cells.

The researchers have also made gas sensors from graphene several times smaller than a hair's width and so sensitive they can detect when a single gas molecule is present on them.

It makes an extremely strong support membrane for observing biological molecules in a Transmission Electron Microscope and is so electron transparent even individual metal atoms can be seen on its surface, which visitors can experience for themselves in the virtual TEM. It is the strongest material found so far, which can be used to make ultra-strong, conductive composite materials.

The exhibit will also feature entertaining and educational iPad games, which can also be downloaded for iOS and Android devices from their respective app stores.

One of the exhibitors, Dr Ernie Hill, said: "This is a great opportunity for us to present some of our groundbreaking work to the general public in what we hope is an interesting and entertaining way.

"The story of how Andre and Kostya produced this remarkable material is inspirational for any youngster wishing to enter research as a career and indeed to anyone with an interest in scientific discovery."

The scientists will be on hand at the exhibition which runs from 5 July to 10 July, to talk visitors through the research.

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>