Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welders Can Breathe Easier with Chromium-Free Alloy

14.02.2011
A new alloy promises to lessen welders’ risk of breathing toxic fumes on the job.

The alloy is a welding “consumable” – the material that melts under the welder’s torch to fill the gap between parts that are being joined.

The new nickel alloy consumable is more expensive compared to those already on the market, but worth the cost in situations where adequate ventilation is a problem.

That’s why two Ohio State University engineers invented the alloy – specifically to aid military and commercial welding personnel who work in tight spaces.

In tests, welds made with the new consumable proved just as strong and corrosion-resistant as welds made with commercial stainless steel consumables. When melted, however, the new alloy does not produce fumes of hexavalent chromium, a toxic form of the element chromium which has been linked to cancer.

All stainless steels contain chromium, but Gerald Frankel and John Lippold, both professors of materials science and engineering at Ohio State, determined that the consumable alloy that joins stainless steel parts together doesn’t have to contain the metal.

Use of the new alloy essentially eliminates hexavalent chromium in the welding fumes.

The university has three issued US patents and a pending European patent application covering a series of alloys – based on nickel and copper but with no chromium – all of which can be used with standard welding equipment.

The new alloy is expensive, however. The engineers estimated that it would cost five to 10 times more than standard welding consumables, depending on metal prices.

The Occupational Safety and Health Administration sets limits on workers’ exposure to hexavalent chromium in welding fumes, which affect welders themselves and their surrounding coworkers. Reduced exposure to such toxic fumes requires either extreme ventilation or use of a chromium-free consumable.

Frankel said that the high cost of the alloy would be justified in situations where ample ventilation may be impossible.

“I always think of someone welding a steel pipe, deep inside a ship at sea,” he said. “Ventilation might not be possible, and a breathing appartus for the welder would make working in a confined space even more difficult. In that case, using our alloy would lower the amount of ventilation needed, and help reduce costs overall.”

Frankel is a corrosion expert; Lippold is a welding expert. Lippold was already looking for ways to limit the amount of another metal – manganese, which can cause neurological damage – in welding consumables, when Frankel approached him about chromium.

“We came up with an alloy that is compatible with stainless steel from a corrosion perspective, and a welding process that results in high quality welds,” Lippold said. “It is a drop-in replacement for stainless steel comsumables welders use now.”

Sometimes welders use a consumable as a bare metal wire, and other times they need to use an electrode made from a metal core coated with flux – a chemical agent that removes impurities from the weld. The Ohio State alloy works for either application.

In the laboratory, the researchers performed electrochemical tests to optimize the composition for corrosion resistance. They also performed mechanical tests of the weld joint to test the alloy’s strength. The new alloy’s performance was comparable to standard commercial welding consumables for stainless steel.

Frankel and Lippold have begun further testing of their alloy with Euroweld, Ltd., a manufacturer of specialty welding materials headquartered in Mooresville, North Carolina.

The engineers are now working on ways to lower the cost of the consumable.

The university will license the alloy and its applications for commercial development.

The Strategic Environmental Research and Development Program – a partnership of the Department of Defense, the Environmental Protection Agency, and the Department of Energy – funded this research.

Contacts: Gerald Frankel, (614) 688-4128; Frankel.10@osu.edu
John Lippold, (614) 292-2466; Lippold.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>