Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welders Can Breathe Easier with Chromium-Free Alloy

14.02.2011
A new alloy promises to lessen welders’ risk of breathing toxic fumes on the job.

The alloy is a welding “consumable” – the material that melts under the welder’s torch to fill the gap between parts that are being joined.

The new nickel alloy consumable is more expensive compared to those already on the market, but worth the cost in situations where adequate ventilation is a problem.

That’s why two Ohio State University engineers invented the alloy – specifically to aid military and commercial welding personnel who work in tight spaces.

In tests, welds made with the new consumable proved just as strong and corrosion-resistant as welds made with commercial stainless steel consumables. When melted, however, the new alloy does not produce fumes of hexavalent chromium, a toxic form of the element chromium which has been linked to cancer.

All stainless steels contain chromium, but Gerald Frankel and John Lippold, both professors of materials science and engineering at Ohio State, determined that the consumable alloy that joins stainless steel parts together doesn’t have to contain the metal.

Use of the new alloy essentially eliminates hexavalent chromium in the welding fumes.

The university has three issued US patents and a pending European patent application covering a series of alloys – based on nickel and copper but with no chromium – all of which can be used with standard welding equipment.

The new alloy is expensive, however. The engineers estimated that it would cost five to 10 times more than standard welding consumables, depending on metal prices.

The Occupational Safety and Health Administration sets limits on workers’ exposure to hexavalent chromium in welding fumes, which affect welders themselves and their surrounding coworkers. Reduced exposure to such toxic fumes requires either extreme ventilation or use of a chromium-free consumable.

Frankel said that the high cost of the alloy would be justified in situations where ample ventilation may be impossible.

“I always think of someone welding a steel pipe, deep inside a ship at sea,” he said. “Ventilation might not be possible, and a breathing appartus for the welder would make working in a confined space even more difficult. In that case, using our alloy would lower the amount of ventilation needed, and help reduce costs overall.”

Frankel is a corrosion expert; Lippold is a welding expert. Lippold was already looking for ways to limit the amount of another metal – manganese, which can cause neurological damage – in welding consumables, when Frankel approached him about chromium.

“We came up with an alloy that is compatible with stainless steel from a corrosion perspective, and a welding process that results in high quality welds,” Lippold said. “It is a drop-in replacement for stainless steel comsumables welders use now.”

Sometimes welders use a consumable as a bare metal wire, and other times they need to use an electrode made from a metal core coated with flux – a chemical agent that removes impurities from the weld. The Ohio State alloy works for either application.

In the laboratory, the researchers performed electrochemical tests to optimize the composition for corrosion resistance. They also performed mechanical tests of the weld joint to test the alloy’s strength. The new alloy’s performance was comparable to standard commercial welding consumables for stainless steel.

Frankel and Lippold have begun further testing of their alloy with Euroweld, Ltd., a manufacturer of specialty welding materials headquartered in Mooresville, North Carolina.

The engineers are now working on ways to lower the cost of the consumable.

The university will license the alloy and its applications for commercial development.

The Strategic Environmental Research and Development Program – a partnership of the Department of Defense, the Environmental Protection Agency, and the Department of Energy – funded this research.

Contacts: Gerald Frankel, (614) 688-4128; Frankel.10@osu.edu
John Lippold, (614) 292-2466; Lippold.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>