Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welders Can Breathe Easier with Chromium-Free Alloy

14.02.2011
A new alloy promises to lessen welders’ risk of breathing toxic fumes on the job.

The alloy is a welding “consumable” – the material that melts under the welder’s torch to fill the gap between parts that are being joined.

The new nickel alloy consumable is more expensive compared to those already on the market, but worth the cost in situations where adequate ventilation is a problem.

That’s why two Ohio State University engineers invented the alloy – specifically to aid military and commercial welding personnel who work in tight spaces.

In tests, welds made with the new consumable proved just as strong and corrosion-resistant as welds made with commercial stainless steel consumables. When melted, however, the new alloy does not produce fumes of hexavalent chromium, a toxic form of the element chromium which has been linked to cancer.

All stainless steels contain chromium, but Gerald Frankel and John Lippold, both professors of materials science and engineering at Ohio State, determined that the consumable alloy that joins stainless steel parts together doesn’t have to contain the metal.

Use of the new alloy essentially eliminates hexavalent chromium in the welding fumes.

The university has three issued US patents and a pending European patent application covering a series of alloys – based on nickel and copper but with no chromium – all of which can be used with standard welding equipment.

The new alloy is expensive, however. The engineers estimated that it would cost five to 10 times more than standard welding consumables, depending on metal prices.

The Occupational Safety and Health Administration sets limits on workers’ exposure to hexavalent chromium in welding fumes, which affect welders themselves and their surrounding coworkers. Reduced exposure to such toxic fumes requires either extreme ventilation or use of a chromium-free consumable.

Frankel said that the high cost of the alloy would be justified in situations where ample ventilation may be impossible.

“I always think of someone welding a steel pipe, deep inside a ship at sea,” he said. “Ventilation might not be possible, and a breathing appartus for the welder would make working in a confined space even more difficult. In that case, using our alloy would lower the amount of ventilation needed, and help reduce costs overall.”

Frankel is a corrosion expert; Lippold is a welding expert. Lippold was already looking for ways to limit the amount of another metal – manganese, which can cause neurological damage – in welding consumables, when Frankel approached him about chromium.

“We came up with an alloy that is compatible with stainless steel from a corrosion perspective, and a welding process that results in high quality welds,” Lippold said. “It is a drop-in replacement for stainless steel comsumables welders use now.”

Sometimes welders use a consumable as a bare metal wire, and other times they need to use an electrode made from a metal core coated with flux – a chemical agent that removes impurities from the weld. The Ohio State alloy works for either application.

In the laboratory, the researchers performed electrochemical tests to optimize the composition for corrosion resistance. They also performed mechanical tests of the weld joint to test the alloy’s strength. The new alloy’s performance was comparable to standard commercial welding consumables for stainless steel.

Frankel and Lippold have begun further testing of their alloy with Euroweld, Ltd., a manufacturer of specialty welding materials headquartered in Mooresville, North Carolina.

The engineers are now working on ways to lower the cost of the consumable.

The university will license the alloy and its applications for commercial development.

The Strategic Environmental Research and Development Program – a partnership of the Department of Defense, the Environmental Protection Agency, and the Department of Energy – funded this research.

Contacts: Gerald Frankel, (614) 688-4128; Frankel.10@osu.edu
John Lippold, (614) 292-2466; Lippold.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>