Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water may not run uphill, but it practically flies off new surface

25.02.2010
Engineering researchers have crafted a flat surface that refuses to get wet. Water droplets skitter across it like ball bearings tossed on ice.

The inspiration? Not wax. Not glass. Not even Teflon.

Instead, University of Florida engineers have achieved what they label in a new paper a “nearly perfect hydrophobic interface” by reproducing, on small bits of flat plastic, the shape and patterns of the minute hairs that grow on the bodies of spiders.

“They have short hairs and longer hairs, and they vary a lot. And that is what we mimic,” said Wolfgang Sigmund, a professor of materials science and engineering.

A paper about the surface, which works equally well with hot or cold water, appears in this month’s edition of the journal Langmuir.

Spiders use their water-repelling hairs to stay dry or avoid drowning, with water spiders capturing air bubbles and toting them underwater to breathe. Potential applications for UF’s ultra-water-repellent surfaces are many, Sigmund said. When water scampers off the surface, it picks up and carries dirt with it, in effect making the surface self-cleaning. As such, it is ideal for some food packaging, or windows, or solar cells that must stay clean to gather sunlight, he said. Boat designers might coat hulls with it, making boats faster and more efficient.

Sigmund said he began working on the project about five years ago after picking up on the work of a colleague. Sigmund was experimenting with microscopic fibers when he turned to spiders, noted by biologists for at least a century for their water-repelling hairs.

As a scientist and engineer, he said, his natural tendency was to make all his fibers the same size and distance apart. But he learned that spider hairs are both long and short and variously curved and straight, forming a surface that is anything but uniform. He decided to try to mimic this random, chaotic surface using plastic hairs varying in size but averaging about 600 microns, or millionths of a meter.

The results came as a great surprise.

“Most people that publish in this field always go for these perfect structures, and we are the first to show that the bad ones are the better ones,” Sigmund said. “Of course this is a finding in a lab. This is not something you expect from theory.”

To be sure, water-repelling surfaces or treatments are already common, spanning shoe wax to caulk to car windshield treatments. Scientists have also reproduced other biologically inspired water repelling surfaces, including ones patterned after lotus leaves.

But Sigmund said the UF surface may be the most or among the most water phobic. Close-up photographs of water droplets on dime-sized plastic squares show that the droplets maintain their spherical shape, whether standing still or moving. Droplets bulge down on most other surfaces, dragging a kind of tail as they move. Sigmund said his surface is the first to shuttle droplets with no tail.

Also, unlike many water-repelling surfaces, the UF one relies entirely on the microscopic shape and patterns of the material — rather than its composition.

In other words, physics, not chemistry, is what makes it water repellent. Theoretically, that means the technique could transform even the most water-sopping materials – say, sponges – into water-shedding ones. It also means that Sigmund’s surfaces need never slough off dangerous chemicals. Provided the surface material itself is made safe, making it water repellent introduces no new risks.

Although he hasn’t published the research yet, Sigmund said a variation of the surface also repels oil, a first for the industry.

Sigmund said making the water or oil-repelling surfaces involves applying a hole-filled membrane to a polymer, heating the two, and then peeling off the membrane. Made gooey by the heat, the polymer comes out of the holes in the desired thin, randomly sized fibers.

While inexpensive, it is hard to produce successful surfaces with great reliability, and different techniques need to be developed to make the surfaces in commercially available quantities and size, Sigmund said. Also, he said, more research is needed to make the surfaces hardy and resistant to damage.

UF patents have already drawn a great deal of industry attention, he said. “We are at the very beginning but there is a lot of interest from industry, because our surface is the first one that relies only on surface features and can repel hot water, cold water, and if we change the chemistry, both oil and water.”

Doctoral student Shu-Hau Hsu and undergraduate Eli Rubin contributed to the research, funded in part by a scholarship from Ohio-based OMNOVA Solutions Foundation.

Writer
Aaron Hoover, ahoover@ufl.edu, 352-392-0186
Source
Wolfgang Sigmund, sigmund@ufl.edu, 352-246-3396

Wolfgang Sigmund | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>