Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the hidden life of materials

28.10.2014

Ultrafast electron diffraction experiments open a new window on the microscopic world

Researchers at McGill University have succeeded in simultaneously observing the reorganizations of atomic positions and electron distribution during the transformation of the “smart material” vanadium dioxide (VO2) from a semiconductor into a metal – in a time frame a trillion times faster than the blink of an eye. 


Prof. Siwick tweaking up the laser in his McGill University lab. CREDIT: Allen McInnis for McGill University

The results, reported Oct. 24 in Science, mark the first time that experiments have been able to distinguish changes in a material’s atomic-lattice structure from the relocation of the electrons in such a blazingly fast process.

The measurements were achieved thanks to the McGill team’s development of instrumentation that could be used by scientists in a variety of disciplines: to examine the fleeting but crucial transformations during chemical reactions, for example, or to enable biologists to obtain an atomic-level understanding of protein function. This ultrafast instrumentation combines tools and techniques of electron microscopy with those of laser spectroscopy in novel ways. 

“We’ve developed instruments and approaches that allow us to actually look into the microscopic structure of matter, on femtosecond time scales (one millionth of a billionth of a second) that are fundamental to processes in chemistry, materials science, condensed-matter physics, and biology,” says Bradley Siwick, the Canada Research Chair in Ultrafast Science at McGill.

“We’re able to both watch where nuclei go, and separate that from what’s happening with the electrons,” says Siwick, an associate professor in the departments of Chemistry and Physics. “And, on top of that, we are able to say what impact those structural changes have on the property of the material. That’s what’s really important technologically.”

By taking advantage of these recent advances, the research group has shed new light on a long-standing problem in condensed matter physics. The semiconductor-metal transition in Vanadium dioxide has intrigued the scientific community since the late 1950s.The material acts as a semiconductor at low temperatures but transforms to a highly conductive metal when temperature rises to around 60 degrees Celsius – not that much warmer than room temperature. This unusual quality gives the material the potential to be used in a range of applications, from high-speed optical switches to heat-sensitive smart coatings on windows.

The experiments took place in Siwick’s lab in the basement of McGill’s Chemistry building, where he and his team of grad students spent nearly four years painstakingly assembling a maze of lasers, amplifiers and lenses alongside an in-house designed and built electron microscope on a vibration-free steel table.

To conduct the experiments, the McGill team collaborated with the research group of Mohamed Chaker at INRS EMT, a university research centre outside Montreal. The INRS scientists provided the high quality, extremely thin samples of VO2 – about 70 nanometers, or 1000 times smaller than the width of a human hair– required to make ultrafast electron diffraction measurements.

The diffraction patterns provide atomic-length-scale snapshots of the material structure at specific moments during rearrangement. A series of such snapshots, run together, effectively creates a kind of movie, much like an old-fashioned flip book. 

 “This opens a whole new window on the microscopic world that we hope will answer many outstanding questions in materials and molecular physics, but also uncover at least as many surprises.  When you look with new eyes you have a chance to see things in new ways,” Siwick says.

The research was supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs program, and the Fonds du Recherche du Quèbec-Nature et Technologies.

``A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction``, Vance R. Morrison, Robert P. Chatelain et al, Science, Oct. 24, 2014.
DOI: 10.1126/science.1253779
http://www.sciencemag.org/content/346/6208/445.full 

Contact Information

Contact: Prof. Bradley Siwick
Organization: Departments of Physics and Chemistry

Secondary Contact Information

Contact: Chris Chipello
Organization: Media Relations Office
Office Phone: 514-398-4201

Chris Chipello | Eurek Alert!
Further information:
http://www.mcgill.ca/newsroom/channels/news/watching-hidden-life-materials-239767

Further reports about: Electrons INRS McGill VO2 dioxide experiments materials microscopic physics semiconductor snapshots structure

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>