Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vise Squad: Putting the Squeeze on a Crystal Leads to Novel Electronics

11.05.2009
A clever materials science technique that uses a silicon crystal as a sort of nanoscale vise to squeeze another crystal into a more useful shape may launch a new class of electronic devices that remember their last state even after power is turned off.

Computers that could switch on instantly without the time-consuming process of “booting” an operating system is just one of the possibilities, according to a new paper by a team of researchers spanning four universities, two federal laboratories and three corporate labs.*

Almost exactly two years ago, a team led by Joseph Woicik of NIST and several other federal, academic and industrial laboratories combined precision X-ray spectroscopy data from the NIST beamlines at the National Synchrotron Light Source with theoretical calculations to demonstrate that by carefully layering a thin film of strontium titanate onto a pure silicon crystal, they could distort the titanium compound into something it normally wasn’t—a so-called “ferroelectric” compound that might serve as a fast, efficient medium for data storage.** The new paper adds a key experimental and technological demonstration—the ability to write, read, store and erase patterned bits of data in the strontium titanate film.

In contrast to a traditional data storage material, which records data as a pattern of magnetic regions pointing in different directions, a ferroelectric can do the same with tiny regions of polarized electric charges. Ferroelectric memories are used, for example, in “smart cards” for subway systems. Ferroelectric structures that could be built directly onto silicon crystals, the most common materials base for consumer electronics, have been sought for years for a variety of applications, including nonvolatile memory (data that is not lost when power is turned off) and temperature or pressure sensors integrated into silicon-based microelectronics. One of the potentially biggest prizes would be ferroelectric transistors that could retain their logic state (“on” or “off”) without power, which could enable computers that switch on instantly without needing a boot stage.

The breakthrough originated with researcher Hao Li of Motorola, Inc., who succeeded in depositing the metal oxide directly onto silicon with no intervening layer of silicon oxide producing “coherency” between the two crystal structures—the unique matching up perfectly of one atom to the next across the metal-oxide/Si interface. This is a difficult trick both because silicon is highly reactive to oxidation and because the crystal spacing of the two materials does not normally match. Guided by precision X-ray diffraction data from NIST, Li developed a finely controlled method of depositing the strontium titanate in stages, gradually building up layers that were only a few molecules thick. The result, X-ray data showed, was that the silicon atoms literally squeezed the cubic strontium-titanate crystal to make it fit, distorting it into an oblong shape. That distortion creates a structural instability in the film that makes the compound a ferroelectric.

While theoretical calculations and spectroscopic data demonstrated that the distorted crystal behaved like a ferroelectric, proof of the ferroelectric functionality waited on the new work led by Cornell University professor Darrell Schlom, whose team used a technique called piezoresponse force microscopy to write, read and erase polarized domains in the strontium titanate film.

Researchers from Cornell, the University of Pittsburgh, NIST, Pennsylvania State University, Northwestern University, Motorola, the Energy Department’s Ames Laboratory, Intel Corporation, and Tricorn Tech contributed to the latest paper. X-ray diffraction data were taken at the Advanced Photon Source, Argonne National Laboratory. The research was funded in part by the Office of Naval Research and the National Science Foundation.

* M.P. Warusawithana, C. Cen, C.R. Sleasman, J.C. Woicik, Y. Li, L.F. Kourkoutis, J.A. Klug, H. Li, P. Ryan, L.-P. Wang, M. Bedzyk, D.A. Muller, L.-Q. Chen, J. Levy and D.G. Schlom. A ferroelectric oxide made directly on silicon. Science V 324 17 April 17, 2009. DOI: 10.1126/science.1169678.

** J.C. Woicik, E.L. Shirley, C.S. Hellberg, K.E. Andersen, S. Sambasivan, D.A. Fischer, B.D. Chapman, E.A. Stern, P. Ryan, D.L. Ederer and H. Li. Ferroelectric distortion in SrTiO3 thin films on Si (001) by x-ray absorption fine structure spectroscopy: Experiment and first-principles calculations. Physical Review B 75, Rapid Communications, 140103 April 24, 2007. DOI: 10.1103/PhysRevB.75.140103.

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>