Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC Researchers Develop New Model to Predict Optical Properties of Nano-Structures

25.03.2011
UBC chemists have developed a new model to predict the optical properties of non-conducting ultra-fine particles.

The finding could help inform the design of tailored nano-structures, and be of utility in a wide range of fields, including the remote sensing of atmospheric pollutants and the study of cosmic dust formation.

Aerosols and nano-particles play a key role in atmospheric processes as industrial pollutants, in interstellar chemistry and in drug delivery systems, and have become an increasingly important area of research. They are often complex particles made up of simpler building blocks.

Now research published this week by UBC chemists indicates that the optical properties of more complex non-conducting nano-structures can be predicted based on an understanding of the simple nano-objects that make them up. Those optical properties in turn give researchers and engineers an understanding of the particle's structure.

"Engineering complex nano-structures with particular infrared responses typically involves hugely complex calculations and is a bit hit and miss," says Thomas Preston, a researcher with the UBC Department of Chemistry.

"Our solution is a relatively simple model that could help guide us in more efficiently engineering nano-materials with the properties we want, and help us understand the properties of these small particles that play an important role in so many processes."

The findings were published this week in the Proceedings of the National Academy of Sciences.

"For example, the properties of a more complex particle made up of a cavity and a core structure can be understood as a hybrid of the individual pieces that make it up," says UBC Professor Ruth Signorell, an expert on the characterization of molecular nano-particles and aerosols and co-author of the study.

The experiment also tested the model against CO2 aerosols with a cubic shape, which play a role in cloud formation on Mars.

The research was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation.

Read the paper in the Proceedings of the National Academy of Sciences
www.pnas.org/content/early/2011/03/14/1100170108.abstract

Chris Balma | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>