Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Toys made of liquid wood

Most plastics are based on petroleum. A bio-plastic that consists of one hundred percent renewable raw materials helps to conserve this resource. Researchers have now optimized the plastic in such a way that it is even suitable for products such as Nativity figurines.

Toys have to put up with a lot of rough treatment: They are sucked by small children, bitten with milk teeth, dragged along behind bobby cars, and every now and then they have to survive a rainy night outdoors. Whatever happens, it is vital that the material does not release any softeners or heavy metals that could endanger children.

Toys can be made of liquid wood in future. The advantage is that this bio-plastic, known as ARBOFORM®, is made of one hundred percent renewable raw materials and is therefore not reliant on petroleum. Researchers at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal and the Fraunhofer spin-off TECNARO GmbH have developed the material. But what exactly is liquid wood? “The cellulose industry separates wood into its three main components – lignin, cellulose and hemicellulose,” explains ICT team leader Emilia Regina Inone-Kauffmann. “The lignin is not needed in papermaking, however. Our colleagues at TECNARO mix lignin with fine natural fibers made of wood, hemp or flax and natural additives such as wax. From this, they produce plastic granulate that can be melted and injection-molded.” Car parts and urns made of this bio-plastic already exist, but it is not suitable for toys in this form: To separate the lignin from the cell fibers, the workers in the cellulose industry add sulfurous substances. However, children’s toys should not contain sulfur because, for one reason, it can smell very unpleasant.

“We were able to reduce the sulfur content in ARBOFORM by about 90 percent, and produced Nativity figurines in cooperation with Schleich GmbH. Other products are now at the planning stage,” says TECNARO’s managing director Helmut Nägele. This is a challenging task: Sulfur-free lignins are usually soluble in water – and therefore unsuitable for toys. On no account must they dissolve if they are left out in the rain or if children suck them. With the aid of suitable additives, the TECNARO scientists were able to modify the bio-plastic in such a way that it survives contact with water and saliva undamaged. Can the material be recycled? “To find that out, we produced components, broke them up into small pieces, and re-processed the broken pieces – ten times in all. We did not detect any change in the material properties of the low-sulfur bio-plastic, so that means it can be recycled,” says Inone-Kauffmann.

Emilia Regina Inone-Kauffmann | alfa
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>