Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny 3-D images from Stanford and SLAC shed light on origin of Earth's core

17.12.2010
A new method of capturing detailed, three-dimensional images of minute samples of material under extreme pressures is shedding light on the evolution of the Earth's interior. Early results suggest that the early Earth did not have to be entirely molten to separate into the rocky crust and iron-rich core it has today. Researchers at Stanford University and SLAC National Accelerator Laboratory are leading the group pioneering the technique, which could lead to a wide range of new experiments.

To answer the big questions, it often helps to look at the smallest details. That is the approach Stanford mineral physicist Wendy Mao is taking to understanding a major event in Earth's inner history.

Using a new technique to scrutinize how minute amounts of iron and silicate minerals interact at ultra-high pressures and temperatures, she is gaining insight into the biggest transformation Earth has ever undergone – the separation of its rocky mantle from its iron-rich core approximately 4.5 billion years ago.

The technique, called high-pressure nanoscale X-ray computed tomography, is being developed at SLAC National Accelerator Laboratory. With it, Mao is getting unprecedented detail – in three-dimensional images – of changes in the texture and shape of molten iron and solid silicate minerals as they respond to the same intense pressures and temperatures found deep in the Earth.

Mao will present the results of the first few experiments with the technique at the annual meeting of the American Geophysical Union in San Francisco on Thursday, Dec. 16.

Tomography refers to the process that creates a three-dimensional image by combining a series of two-dimensional images, or cross-sections, through an object. A computer program interpolates between the images to flesh out a recreation of the object.

Researchers at SLAC have developed a way to combine a diamond anvil cell, which compresses tiny samples between the tips of two diamonds, with nanoscale X-ray computed tomography to capture images of material at high pressure. The pressures deep in the Earth are so high – millions of times atmospheric pressure – that only diamonds can exert the needed pressure without breaking under the force.

Courtesy of Wendy Mao

Mineral physicist Wendy Mao
At present, the SLAC researchers and their collaborators from HPSync, the High Pressure Synergetic Consortium at the Advanced Photon Source at Argonne National Laboratory, are the only group using this technique.

"It is pretty exciting, being able to measure the interactions of iron and silicate materials at very high pressures and temperatures, which you could not do before," said Mao, an assistant professor of geological and environmental sciences and of photon science. "No one has ever imaged these sorts of changes at these very high pressures."

It is generally agreed that the initially homogenous ball of material that was the very early Earth had to be very hot in order to differentiate into the layered sphere we live on today. Since the crust and the layer underneath it, the mantle, are silicate-rich, rocky layers, while the core is iron-rich, it's clear that silicate and iron went in different directions at some point. But how they separated out and squeezed past each other is not clear. Silicate minerals, which contain silica, make up about 90 percent of the crust of the Earth.

If the planet got hot enough to melt both elements, it would have been easy enough for the difference in density to send iron to the bottom and silicates to the top.

If the temperature was not hot enough to melt silicates, it has been proposed that molten iron might have been able to move along the boundaries between grains of the solid silicate minerals.

"To prove that, though, you need to know whether the molten iron would tend to form small spheres or whether it would form channels," Mao said. "That would depend on the surface energy between the iron and silicate."

Previous experimental work has shown that at low pressure, iron forms isolated spheres, similar to the way water beads up on a waxed surface, Mao said, and spheres could not percolate through solid silicate material.

Mao said the results of her first high-pressure experiments using the tomography apparatus suggest that at high pressure, since the silicate transforms into a different structure, the interaction between the iron and silicate could be different than at low pressure.

"At high pressure, the iron takes a more elongate, platelet-like form," she said. That means the iron would spread out on the surface of the silicate minerals, connecting to form channels instead of remaining in isolated spheres.

"So it looks like you could get some percolation of iron at high pressure," Mao said. "If iron could do that, that would tell you something really significant about the thermal history of the Earth."

But she cautioned that she only has data from the initial experiments.

"We have some interesting results, but it is the kind of measurement that you need to repeat a couple times to make sure," Mao said.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Materials Sciences:

nachricht Nanotube fibers in a jiffy
12.01.2018 | Rice University

nachricht Fraunhofer IMWS tests environmentally friendly microplastic alternatives in cosmetic products
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>