Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique Reveals Structure of Printable Electronics

17.04.2012
An innovative X-ray technique has given North Carolina State University researchers and their collaborators new insight into how organic polymers can be used in printable electronics such as transistors and solar cells. Their discoveries may lead to cheaper, more efficient printable electronic devices.

Printable electronics are created by spraying or printing inks containing conductive organic molecules onto a surface. The process is fast and much less expensive than current production techniques for items like solar cells or computer and television displays.

Additionally, it holds potential for amazing new applications: picture a wearable interactive display that needs no batteries. In the solar industry, the ability to print solar cells on giant roll-to-roll printing presses – like printing a newspaper – could make the technology much more affordable and mass marketable.

NC State physicists Dr. Harald Ade and Dr. Brian Collins, in collaboration with Dr. Michael Chabinyc at the University of California Santa Barbara, wanted to know why some processing steps resulted in better and more efficient devices than others. “Manufacturers know that some materials work better than others in these devices, but it’s essentially still a process of trial and error,” Ade says. “We wanted to give them a way to characterize these materials so that they could see what they had and why it was working.”

To do that, Collins and Ade went to Lawrence Berkeley National Laboratory’s Advanced Light Source (ALS). They developed a new technique which used the powerful X-rays from the ALS to look at how individual molecules within these materials organize. They found that the best performing devices were characterized by particular molecular alignments within the materials.

“In transistors, we found that as the alignment between molecules increased, so did the performance,” Collins says. “In the case of the solar cells, we discovered alignment of molecules at interfaces in the device, which may be the key to more efficient harvesting of light. For both, this was the first time anyone had been able to really look at what was happening at the molecular level.”

The researchers’ results appear in the journal Nature Materials. Led by NC State and UCSB, an international collaboration of researchers from Lawrence Berkeley National Laboratory, Monash University in Australia, and University Erlangen-Nuremberg in Germany contributed to the work.

“We’re hoping that this technique will give researchers and manufacturers greater insight into the fundamentals of these materials,” Collins says. “Understanding how these materials work can only lead to improved performance and better commercial viability.”

The research was funded by the Department of Energy, National Science Foundation through the American Reinvestment and Recovery Act, and Department of Education. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy.

-peake-

Note to editors: Abstract follows.

“Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films”

Authors: B. A. Collins, H. Yan, E. Gann, H. Ade, North Carolina State University; J. E. Cochran, M. L. Chabinyc, University of California, Santa Barbara; C. Hub, R. Fink, Physikalische Chemie and ICMM, University Erlangen-Nuremberg, Erlangen, Germany; C.Wang, Advanced Light Source, Lawrence Berkeley National Laboratory; T. Schuettfort, University of Cambridge, U.K.; C. R. McNeill, Monash University, Victoria, Australia

Published: April 15th 2012 in Nature Materials

Abstract:
Molecular orientation critically influences the mechanical, chemical, optical and electronic properties of organic materials. So far, molecular-scale ordering in soft matter could be characterized with X-ray or electron microscopy techniques only if the sample exhibited sufficient crystallinity. Here, we show that the resonant scattering of polarized soft X-rays (P-SoXS) by molecular orbitals is not limited by crystallinity and that it can be used to probe molecular orientation down to size scales of 10 nm. We first apply the technique on highly crystalline small-molecule thin films and subsequently use its high sensitivity to probe the impact of liquid-crystalline ordering on charge mobility in polymeric transistors. P-SoXS also reveals scattering anisotropy in amorphous domains of all-polymer organic solar cells where interfacial interactions pattern orientational alignment in the matrix phase, which probably plays an important role in the photophysics. The energy and q-dependence of the scattering anisotropy allows the identification of the composition and the degree of orientational order in the domains.

Tracey Peake | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>