Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technion Researchers Find New Way to Charge Solar Cell Materials

02.12.2011
Solar power must become more efficient and less expensive to compete with energy produced by fossil fuels. Silicon-based solar cells are the dominant technology in the field, but the widespread adoption of these cells has been slowed by their high costs. Solar cells that use inorganic nanocrystals or "quantum dots" could be a cheaper alternative, but they are generally less efficient at turning solar energy into electricity.

Technion-Israel Institute of Technology researchers have now found a new way to generate an electrical field inside the quantum dots, making them more suitable for building an energy-efficient nanocrystal solar cell.

In their report in the October 9 issue of Nature Materials, Professor Nir Tessler (of the Zisapel Nano-Electronics Center in the Technion Department of Electrical Engineering) and colleagues describe how they "tuned" the electrical properties of quantum dots before testing their capabilities in a model solar cell.

Nanocrystal or quantum dots "are promising materials for low-cost and high efficiency solar cells" due to their unusual electronic properties, Tessler said. For instance, the size of a quantum dot is uniquely correlated to its light absorption, so changing a dot's size can maximize its ability to harvest light within a solar cell.

To live up to their promise, however, the dots must share electrons efficiently-a feat that has been difficult to control. The Technion study offers a new way to bring an electrical charge to the dots-each about one-millionth the size of the period at the end of this sentence.

Tessler and colleagues were able to generate strong electrical fields within the dots by capping them with two different organic molecules. The chemical groups that attach the molecules to the dots' surface generate the electrical field, they show.

Tessler said the findings give researchers one more method of controlling the building blocks of nanoelectronics. The dots are produced in an optoelectronic "ink" solution, he noted, which could make them suitable for future applications in "the field of printed electronics that will produce sheets of light or sheets of solar cells."

The researchers hope to combine these findings along with their previous experiments that mix different kinds of nanocrystals, to discover whether combining the two methods might lead to even more efficient energy production.

The Technion-Israel Institute of Technology is consistently ranked among the world's leading science and technology universities. Home to three of Israel's five winners of the Nobel Prize in science, the Technion commands a worldwide reputation for its pioneering work in computer science, nanotechnology, biotechnology, energy, water-resource management, medicine, drug development, and aerospace. Headquartered in New York City, the American Technion Society (ATS) promotes scientific and technological research and education at the Technion.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>