Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Generating Skyrmion Molecules and Driving Them under Low Current Density

24.02.2014
RIKEN, the University of Tokyo, and NIMS succeeded for the first time in generating and visualizing electron spin vortex state "skyrmion molecules" with topological charge 2 within a thin film of "La1+2xSr2-2xMn2O7," a layered manganese oxide which is a ferromagnetic material with uniaxial anisotropy.

Skyrmion and skyrmion molecule a: Skyrmion The arrows indicate the directions of the electron spins. The electron spins in a skyrmion head toward the center, while spinning in a vortex shape. The spin directions at the center and at the outermost periphery are vertically opposite. b: Schematic diagram of a skyrmion molecule c: Skyrmion molecule observed within a ferromagnetic thin film in an experiment The plus and minus signs respectively indicate clockwise and counterclockwise spin direction.

Magnetic materials that enhance the magnetotransport property and for the high-density/low-power consumption magnetic memory

While the current density required for driving domain walls within a ferromagnetic system is about 1 billion amperes per square meter, they managed to drive those skyrmion molecules with one-thousandth that density . This result was achieved by a joint research group led by Dr. Xiuzhen Yu, Senior Research Scientist, and Dr. Yoshinori Tokura, Group Director (Professor at the School of Engineering, the University of Tokyo) of the Strong Correlation Physics Research Group, RIKEN Center for Emergent Matter Science (Center Director: Dr. Yoshinori Tokura), and Dr. Koji Kimoto, Unit Director of the Surface Physics and Structure Unit, Advanced Key Technologies Division (Division Director: Dr. Daisuke Fujita), NIMS.

Magnetic memory devices, which use the direction of electron spins within materials as magnetic information, are considered to be promising next-generation devices with high-speed and non-volatile properties. In recent years, magnetic memory devices that manipulate domain walls within ferromagnetic nanowires by using spin polarized electric current have been intensively studied. However, moving domain walls requires a large current density of at least about 1 billion amperes per square meter, and the large power consumption presented a problem. Therefore, a way to drive them under smaller current density had been sought.

In this respect, attention has been paid to "skyrmions," which are magnetic topological textures in which electron spins are aligned in a vortex shape. Unlike ferromagnetic domain walls, skyrmions have no intrinsic pinning sites and can avoid obstacles in the device. Thus, they can be driven under smaller current density than ferromagnetic domain walls. A single skyrmion has topological charge 1, which is equivalent to 1 bit of information. Skyrmions with higher topological charge had been predicted theoretically, but they had never been actually observed.

The joint research group succeeded for the first time in generating skyrmion molecules with topological charge 2 in layered manganese oxide La1+2xSr2-2xMn2O7 while controlling the uniaxial anisotropy and the externally-applied magnetic field, and in driving them with one-thousandth the current density conventionally required for driving ferromagnetic domain walls. Such findings will bring about great development in designing novel magnetic memory devices with high-density and low power consumption with use of skyrmions. The research result has been published in the online edition of the British science journal Nature Communications on January 25 (January 26 JST).

For more details

Dr. Xiuzhen Yu
Senior Research Scientist, Strong Correlation Physics Research Group, RIKEN Center for Emergent Matter Science, RIKEN
TEL: +81-48-462-1111(ext 6324)
FAX: +81-48-462-4703

Dr. Yoshinori Tokura
Professor, School of Engineering, the University of Tokyo
Group Director, Strong Correlation Physics Research Group,
Center Director, RIKEN Center for Emergent Matter Science, RIKEN
TEL: +81-48-467-9601
FAX: +81-48-462-4797

Public relations staff
Emergent Matter Science Planning Office
TEL: +81-48-467-9258
FAX: +81-48-465-8048

Mikiko Tanifuji | Research SEA
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Molecules NIMS RIKEN ferromagnetic manganese skyrmion molecules skyrmions

More articles from Materials Sciences:

nachricht Identifying the complex growth process of strontium titanate thin films
16.04.2014 | National Institute for Materials Science

nachricht World's first successful visualisation of key coenzyme
16.04.2014 | National Institute for Materials Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Siemens at the 2014 UIC ERTMS World Conference in Istanbul

01.04.2014 | Event News

AERA Meeting: German and US-American educational researchers in dialogue

28.03.2014 | Event News

WHS Regional Meeting: International experts address health challenges in Latin America

24.03.2014 | Event News

 
Latest News

NASA's TRMM Satellite Adds Up Tropical Cyclone Ita's Australian Soaking

16.04.2014 | Earth Sciences

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone

16.04.2014 | Life Sciences

JULABO's World of Temperature surprises attendees

16.04.2014 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>