Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Generating Skyrmion Molecules and Driving Them under Low Current Density

24.02.2014
RIKEN, the University of Tokyo, and NIMS succeeded for the first time in generating and visualizing electron spin vortex state "skyrmion molecules" with topological charge 2 within a thin film of "La1+2xSr2-2xMn2O7," a layered manganese oxide which is a ferromagnetic material with uniaxial anisotropy.

Magnetic materials that enhance the magnetotransport property and for the high-density/low-power consumption magnetic memory


Skyrmion and skyrmion molecule a: Skyrmion The arrows indicate the directions of the electron spins. The electron spins in a skyrmion head toward the center, while spinning in a vortex shape. The spin directions at the center and at the outermost periphery are vertically opposite. b: Schematic diagram of a skyrmion molecule c: Skyrmion molecule observed within a ferromagnetic thin film in an experiment The plus and minus signs respectively indicate clockwise and counterclockwise spin direction.

While the current density required for driving domain walls within a ferromagnetic system is about 1 billion amperes per square meter, they managed to drive those skyrmion molecules with one-thousandth that density . This result was achieved by a joint research group led by Dr. Xiuzhen Yu, Senior Research Scientist, and Dr. Yoshinori Tokura, Group Director (Professor at the School of Engineering, the University of Tokyo) of the Strong Correlation Physics Research Group, RIKEN Center for Emergent Matter Science (Center Director: Dr. Yoshinori Tokura), and Dr. Koji Kimoto, Unit Director of the Surface Physics and Structure Unit, Advanced Key Technologies Division (Division Director: Dr. Daisuke Fujita), NIMS.

Magnetic memory devices, which use the direction of electron spins within materials as magnetic information, are considered to be promising next-generation devices with high-speed and non-volatile properties. In recent years, magnetic memory devices that manipulate domain walls within ferromagnetic nanowires by using spin polarized electric current have been intensively studied. However, moving domain walls requires a large current density of at least about 1 billion amperes per square meter, and the large power consumption presented a problem. Therefore, a way to drive them under smaller current density had been sought.

In this respect, attention has been paid to "skyrmions," which are magnetic topological textures in which electron spins are aligned in a vortex shape. Unlike ferromagnetic domain walls, skyrmions have no intrinsic pinning sites and can avoid obstacles in the device. Thus, they can be driven under smaller current density than ferromagnetic domain walls. A single skyrmion has topological charge 1, which is equivalent to 1 bit of information. Skyrmions with higher topological charge had been predicted theoretically, but they had never been actually observed.

The joint research group succeeded for the first time in generating skyrmion molecules with topological charge 2 in layered manganese oxide La1+2xSr2-2xMn2O7 while controlling the uniaxial anisotropy and the externally-applied magnetic field, and in driving them with one-thousandth the current density conventionally required for driving ferromagnetic domain walls. Such findings will bring about great development in designing novel magnetic memory devices with high-density and low power consumption with use of skyrmions. The research result has been published in the online edition of the British science journal Nature Communications on January 25 (January 26 JST).

For more details

Dr. Xiuzhen Yu
Senior Research Scientist, Strong Correlation Physics Research Group, RIKEN Center for Emergent Matter Science, RIKEN
TEL: +81-48-462-1111(ext 6324)
FAX: +81-48-462-4703

Dr. Yoshinori Tokura
Professor, School of Engineering, the University of Tokyo
Group Director, Strong Correlation Physics Research Group,
Center Director, RIKEN Center for Emergent Matter Science, RIKEN
TEL: +81-48-467-9601
FAX: +81-48-462-4797

Public relations staff
Emergent Matter Science Planning Office
TEL: +81-48-467-9258
FAX: +81-48-465-8048

Mikiko Tanifuji | Research SEA
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Molecules NIMS RIKEN ferromagnetic manganese skyrmion molecules skyrmions

More articles from Materials Sciences:

nachricht Personal cooling units on the horizon
29.04.2016 | Penn State

nachricht Exploring phosphorene, a promising new material
29.04.2016 | Rensselaer Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>