Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Development of Exhaust Gas Catalyst with Thermal Agglomeration Resistance 10x Higher than Conventional Materials

10.11.2010
This dramatic improvement in thermal agglomeration resistance opens the road to a large reduction in the amount of rare metals used in exhaust gas purification technologies.

Opening the Road to Reduced Use of Rare Metals

A research team headed by Dr. Hideki Abe, Senior Researcher of the Advanced Electronic Materials Center and Dr. Katsuhiko Ariga, Principal Investigator of the International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (President: Sukekatsu Ushioda) developed an exhaust gas catalyst material with approximately 10 times greater thermal agglomeration resistance than conventional materials. This dramatic improvement in thermal agglomeration resistance opens the road to a large reduction in the amount of rare metals used in exhaust gas purification technologies.

Environmental and energy technologies, represented by automotive exhaust gas purification, (1) are necessary and indispensible for human society in the 21st century for satisfying both abundant energy supplies and safe and healthy life. Metal catalysts,2 which are the most critical element materials in environmental and energy technologies, are confronted with the problem of thermal agglomeration, in which the catalyst loses its activity as a result of bonding/fusion of the catalyst due to heat and the accompanying reduction in the number of catalytic active sites.3 As catalytic active sites of metal catalysts, mainly platinum, palladium, rhodium,4 and other rare metals5 are used. To compensate for the reduction in catalytic activity caused by thermal agglomeration, the current technologies unavoidable require consumption of large amounts of rare metals, as there is no other method of introducing a large excess of active sites in the catalyst. Therefore, in this research, the NIMS team developed a metal catalyst with high resistance to thermal agglomeration by controlling the topology6 of the material at the nano-scale, which is completely different from the conventional approach.

The developed material, called gMetallic Cellh , consists of metal spheres with a cavity approximately 1/100mm in diameter, which is surrounded by a thin cell wall containing pores (channels) 1/1000mm in diameter that enable transmission of substances and energy to and from the outer world. Because gMetallic Cellh has a special topology by which the catalytic active site in the cell is protected by the cell wall, it demonstrates excellent long-term catalytic properties, even under high temperature conditions in which ordinary catalyst materials would lose their activity due to thermal agglomeration.

Metallic Cell is synthesized by precipitating a platinum film on the surface of commercially-available polystyrene powder by chemical reduction in an alcohol solution at normal temperature and pressure, followed by heating to 500‹C to vaporize the polystyrene. Accompanying vaporization of the polystyrene, the hollow topology is formed and pores through which the polystyrene gas escapes are opened in the platinum film, resulting in natural formation of the unique morphology of Metallic Cell shown in Fig. 1. The method used to synthesize Metallic Cell is extremely simple and can be applied not only to platinum, as described here, but also to a number of other metals which display catalytic activity, beginning with rhodium, which shows high activity in NOx purification. The applications of Metallic Cell are not limited to exhaust gas purification technology. Taking advantage of its excellent heat resistance and high scalability, a large reduction in the amount of rare metals used in many environmental and energy technologies is also possible, beginning with fuel cell technology.(7)

Reference Diagram
Automotive exhaust gas purification performance of Metallic Cell (red line in figure). Due to its special topology, Metallic Cell demonstrates heat resistance characteristics greatly exceeding those of the conventional catalyst materials (blue and black lines in figure).

Notes

1. Automotive exhaust gas purification: Automobile engines emit highly concentrated toxic gases, beginning with carbon monoxide and nitrogen oxides (NOx) which are harmful to the human body. When the exhaust gases from engines are released into the atmosphere, these toxic gases must be removed and purified by some method. Exhaust gas purification using metal catalysts is a representative method.

2. Metal catalyst: Generally indicates solid catalysts in which mainly transition metals are used as the material. Metal catalysts are used in important industrial applications, such as purification of exhaust gas from automobiles and power plants, desulfurization of petroleum, etc.

3. Catalytic active site: Indicates the atoms which play the main role in the catalytic reaction, among the atoms comprising the surface of a metal catalyst; these atoms are called catalytic active sites. In general, the activity of a catalytic material is high in proportion to the number of catalytic active sites per unit of weight.

4. Rhodium (Rh): A transition metal element located directly below cobalt in the Periodic Table; atomic number 45. Rh demonstrates high catalytic activity for NOx in exhaust gas purification. Production is small (approximately 10 tons/year), and Rh is also known as the most expensive of the noble metals.

5. Rare metal: General term for metal elements which are produced in small amounts and have a small distribution scale in the market, in contrast to base metals such as iron, copper, aluminum, zinc, and lead. The rare metals occupy an extremely important position as functional materials, including, for example, noble metal elements (platinum, palladium, rhodium, etc.), which are indispensible in exhaust gas purification technology, and rare earths, which are indispensible in high coercivity permanent magnets. Because the distribution of these mineral resources is uneven, it is also known that supplies and prices are easily affected by the political conditions in countries which possess these resources.

6. Topology: Word which expresses the 3-dimensional shape of a body or image in terms of phase geometry.

7. Fuel cell: Device which electrochemically burns small molecules such as hydrogen, methanol, etc. and supplies the charge transfer generated accompanying this reaction for use outside the reaction in the form of electricity. Fuel cells are a new technology which has attracted intense interest as a next-generation energy source.

Acknowledgement
These research results were achieved with the financial support of the World Premier International Research Center Initiative (WPI) of Japanfs Ministry of Education, Culture, Sports, Science and Technology (MEXT).

For more detail

Hideki Abe
Advanced Electronic Materials Center
National Institute for Materials Science
TEL: +81-29-859-2732
E-MailFABE.Hideki@nims.go.jp
Katsuhiko Ariga
International Research Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4597
E-MailFARIGA.Katsuhiko@nims.go.jp
For general inquiry
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-MailFpr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2010/10/p201010050.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>