Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Development of Exhaust Gas Catalyst with Thermal Agglomeration Resistance 10x Higher than Conventional Materials

10.11.2010
This dramatic improvement in thermal agglomeration resistance opens the road to a large reduction in the amount of rare metals used in exhaust gas purification technologies.

Opening the Road to Reduced Use of Rare Metals

A research team headed by Dr. Hideki Abe, Senior Researcher of the Advanced Electronic Materials Center and Dr. Katsuhiko Ariga, Principal Investigator of the International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (President: Sukekatsu Ushioda) developed an exhaust gas catalyst material with approximately 10 times greater thermal agglomeration resistance than conventional materials. This dramatic improvement in thermal agglomeration resistance opens the road to a large reduction in the amount of rare metals used in exhaust gas purification technologies.

Environmental and energy technologies, represented by automotive exhaust gas purification, (1) are necessary and indispensible for human society in the 21st century for satisfying both abundant energy supplies and safe and healthy life. Metal catalysts,2 which are the most critical element materials in environmental and energy technologies, are confronted with the problem of thermal agglomeration, in which the catalyst loses its activity as a result of bonding/fusion of the catalyst due to heat and the accompanying reduction in the number of catalytic active sites.3 As catalytic active sites of metal catalysts, mainly platinum, palladium, rhodium,4 and other rare metals5 are used. To compensate for the reduction in catalytic activity caused by thermal agglomeration, the current technologies unavoidable require consumption of large amounts of rare metals, as there is no other method of introducing a large excess of active sites in the catalyst. Therefore, in this research, the NIMS team developed a metal catalyst with high resistance to thermal agglomeration by controlling the topology6 of the material at the nano-scale, which is completely different from the conventional approach.

The developed material, called gMetallic Cellh , consists of metal spheres with a cavity approximately 1/100mm in diameter, which is surrounded by a thin cell wall containing pores (channels) 1/1000mm in diameter that enable transmission of substances and energy to and from the outer world. Because gMetallic Cellh has a special topology by which the catalytic active site in the cell is protected by the cell wall, it demonstrates excellent long-term catalytic properties, even under high temperature conditions in which ordinary catalyst materials would lose their activity due to thermal agglomeration.

Metallic Cell is synthesized by precipitating a platinum film on the surface of commercially-available polystyrene powder by chemical reduction in an alcohol solution at normal temperature and pressure, followed by heating to 500‹C to vaporize the polystyrene. Accompanying vaporization of the polystyrene, the hollow topology is formed and pores through which the polystyrene gas escapes are opened in the platinum film, resulting in natural formation of the unique morphology of Metallic Cell shown in Fig. 1. The method used to synthesize Metallic Cell is extremely simple and can be applied not only to platinum, as described here, but also to a number of other metals which display catalytic activity, beginning with rhodium, which shows high activity in NOx purification. The applications of Metallic Cell are not limited to exhaust gas purification technology. Taking advantage of its excellent heat resistance and high scalability, a large reduction in the amount of rare metals used in many environmental and energy technologies is also possible, beginning with fuel cell technology.(7)

Reference Diagram
Automotive exhaust gas purification performance of Metallic Cell (red line in figure). Due to its special topology, Metallic Cell demonstrates heat resistance characteristics greatly exceeding those of the conventional catalyst materials (blue and black lines in figure).

Notes

1. Automotive exhaust gas purification: Automobile engines emit highly concentrated toxic gases, beginning with carbon monoxide and nitrogen oxides (NOx) which are harmful to the human body. When the exhaust gases from engines are released into the atmosphere, these toxic gases must be removed and purified by some method. Exhaust gas purification using metal catalysts is a representative method.

2. Metal catalyst: Generally indicates solid catalysts in which mainly transition metals are used as the material. Metal catalysts are used in important industrial applications, such as purification of exhaust gas from automobiles and power plants, desulfurization of petroleum, etc.

3. Catalytic active site: Indicates the atoms which play the main role in the catalytic reaction, among the atoms comprising the surface of a metal catalyst; these atoms are called catalytic active sites. In general, the activity of a catalytic material is high in proportion to the number of catalytic active sites per unit of weight.

4. Rhodium (Rh): A transition metal element located directly below cobalt in the Periodic Table; atomic number 45. Rh demonstrates high catalytic activity for NOx in exhaust gas purification. Production is small (approximately 10 tons/year), and Rh is also known as the most expensive of the noble metals.

5. Rare metal: General term for metal elements which are produced in small amounts and have a small distribution scale in the market, in contrast to base metals such as iron, copper, aluminum, zinc, and lead. The rare metals occupy an extremely important position as functional materials, including, for example, noble metal elements (platinum, palladium, rhodium, etc.), which are indispensible in exhaust gas purification technology, and rare earths, which are indispensible in high coercivity permanent magnets. Because the distribution of these mineral resources is uneven, it is also known that supplies and prices are easily affected by the political conditions in countries which possess these resources.

6. Topology: Word which expresses the 3-dimensional shape of a body or image in terms of phase geometry.

7. Fuel cell: Device which electrochemically burns small molecules such as hydrogen, methanol, etc. and supplies the charge transfer generated accompanying this reaction for use outside the reaction in the form of electricity. Fuel cells are a new technology which has attracted intense interest as a next-generation energy source.

Acknowledgement
These research results were achieved with the financial support of the World Premier International Research Center Initiative (WPI) of Japanfs Ministry of Education, Culture, Sports, Science and Technology (MEXT).

For more detail

Hideki Abe
Advanced Electronic Materials Center
National Institute for Materials Science
TEL: +81-29-859-2732
E-MailFABE.Hideki@nims.go.jp
Katsuhiko Ariga
International Research Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4597
E-MailFARIGA.Katsuhiko@nims.go.jp
For general inquiry
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-MailFpr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2010/10/p201010050.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

21.02.2018 | Health and Medicine

First line of defence against influenza further decoded

21.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>