Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft Matter Offers New Ways to Study How Materials Arrange

22.05.2013
A fried breakfast food popular in Spain provided the inspiration for the development of doughnut-shaped droplets that may provide scientists with a new approach for studying fundamental issues in physics, mathematics and materials.

The doughnut-shaped droplets, a shape known as toroidal, are formed from two dissimilar liquids using a simple rotating stage and an injection needle. About a millimeter in overall size, the droplets are produced individually, their shapes maintained by a surrounding springy material made of polymers.


Georgia Tech Photo: Gary Meek

A toroidal droplet made of a nematic liquid crystal material is shown inside a polymeric material. About a millimeter in overall size, the droplets are produced individually, their shapes maintained by the surrounding springy material made of polymers.

Droplets in this toroidal shape made of a liquid crystal – the same type of material used in laptop displays – may have properties very different from those of spherical droplets made from the same material.

While researchers at the Georgia Institute of Technology don’t have a specific application for the doughnut-shaped droplets yet, they believe the novel structures offer opportunities to study many interesting problems, from looking at the properties of ordered materials within these confined spaces to studying how geometry affects how cells behave.

“Our experiments provide a fresh approach to the way that people have been looking at these kinds of problems, which is mainly theoretical. We are doing experiments with toroids whose geometry can be precisely controlled in the lab,” said Alberto Fernandez-Nieves, an assistant professor in the Georgia Tech School of Physics. “This work opens up a new way to experimentally look at problems that nobody has been able to study before. The properties of toroidal surfaces are very different, from a general point of view, from those of spherical surfaces.”

Development of these “stable nematic droplets with handles” was described May 20 in the early edition of the journal Proceedings of the National Academy of Sciences (PNAS). The research has been sponsored by the National Science Foundation (NSF), and also involves researchers at the Lorentz Institute for Theoretical Physics at Leiden University in The Netherlands and at York University in the United Kingdom.

Droplets normally form spherical shapes to minimize the surface area required to contain a given volume of liquid. Though they appear to be simple, when an ordered material like a crystal or a liquid crystal lives on the surface of a sphere, it provides interesting challenges to mathematicians and theoretical physicists.

A physicist who focuses on soft condensed matter, Fernandez-Nieves had long been interested in the theoretical aspects of curved surfaces. Working with graduate research assistant Ekapop Pairam and postdoctoral fellow Jayalakshmi Vallamkondu, he wanted to extend the theoretical studies into the experimental world for a system of toroidal shapes.

But could doughnut-shaped droplets be made in the lab?

The partial answer came from churros Fernandez-Nieves ate as a child growing up in Spain. These “Spanish doughnuts” – actually spirals – are made by injecting dough into hot oil while the dough is spun and fried.

In the lab at a much smaller size scale, the researchers found they could use a similar process with two immiscible liquids such as glycerine or water and oil, a needle and a magnetically-controlled rotating stage. A droplet of glycerine is injected into the rotating stage containing the oil. In certain conditions, a jet forms at the needle, which closes up into a torus because of the imposed rotation.

“You can control the two relevant curvatures of the torus,” explained Fernandez-Nieves. “You can control how large it is because you can move the needle with respect to the rotation axis. You can also infuse more volume to make the torus thicker.”

If the stage is then turned off, however, the drop of glycerine quickly loses its doughnut shape as surface tension forces it to become a traditional spherical droplet. To maintain the toroidal shape, Fernandez-Nieves and his collaborators replace the surrounding oil with a springy polymeric material; the springy character of this material provides a force that can overcome surface tension forces.

“When you are making the toroid, the forces on the needle are large enough that the surrounding material behaves as a fluid,” he explained. “Once you stop, the elasticity of the outside fluid overcomes surface tension and that freezes the structure in place.”

The researchers have been using the doughnut shapes to study how liquid crystal materials, which are well known for their applications in laptop displays, organize inside the torus. These materials have degrees of order beyond those of simple liquids such as water. For these materials, the toroidal shape provides a new set of study opportunities from both theoretical and experimental perspectives.

“This changes how you think about a liquid inside a container,” said Fernandez-Nieves. “The materials will still adopt the shape of the container, but its energy will be different depending on the shape. The materials feel distortions and will try to minimize them. In a given shape, the molecules in these materials will rearrange themselves to minimize these distortions.”

Among the surprises is that the nematic droplets created with toroidal shapes become chiral, that is, they adopt a certain twisting direction and break their mirror symmetry.

“In our case, the materials we are using are not chiral under normal circumstances,” he noted. “This was a surprise to us, and it has to do with how we are confining the molecules.”

Beyond looking at the dynamics of creating the droplets and how ordered materials behave when the torus transforms into a sphere, Fernandez-Nieves and colleagues are also exploring potential biological applications, applying electrical fields to the droplets, and sharing the unique structures with scientists at other institutions.

“This is the first time that stable nematic droplets have been generated with handles, and we have exploited that to look at the nematic organization inside those spaces,” said Fernandez-Nieves. “Our experiments open up a versatile new approach for generating handled droplets made of an ordered material that can self-assemble into interesting and unexpected structures when confined to these non-spherical spaces. Now that theoreticians realize we can generate and study these systems, there may be much more development in this area.”

In addition to those already mentioned, the paper’s authors included V. Koning, B.C. van Zuiden and V. Vitelli from Leiden University, M.A. Bates from the University of York in the United Kingdom, and P.W. Ellis from Georgia Tech.

The research described here has been sponsored by the National Science Foundation under CAREER award DMR-0847304. The findings and conclusions are those of the authors and do not necessarily represent the official views of the National Science Foundation.

CITATION: E. Pairam, et al., “Stable nematic droplets with handles,” (Proceedings of the National Academy of Sciences, 2013)

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
Media Relations Contact:
John Toon (404-894-6986)(jtoon@gatech.edu).
Writer: John Toon

John Toon | Newswise
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>