Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft Matter Offers New Ways to Study How Materials Arrange

22.05.2013
A fried breakfast food popular in Spain provided the inspiration for the development of doughnut-shaped droplets that may provide scientists with a new approach for studying fundamental issues in physics, mathematics and materials.

The doughnut-shaped droplets, a shape known as toroidal, are formed from two dissimilar liquids using a simple rotating stage and an injection needle. About a millimeter in overall size, the droplets are produced individually, their shapes maintained by a surrounding springy material made of polymers.


Georgia Tech Photo: Gary Meek

A toroidal droplet made of a nematic liquid crystal material is shown inside a polymeric material. About a millimeter in overall size, the droplets are produced individually, their shapes maintained by the surrounding springy material made of polymers.

Droplets in this toroidal shape made of a liquid crystal – the same type of material used in laptop displays – may have properties very different from those of spherical droplets made from the same material.

While researchers at the Georgia Institute of Technology don’t have a specific application for the doughnut-shaped droplets yet, they believe the novel structures offer opportunities to study many interesting problems, from looking at the properties of ordered materials within these confined spaces to studying how geometry affects how cells behave.

“Our experiments provide a fresh approach to the way that people have been looking at these kinds of problems, which is mainly theoretical. We are doing experiments with toroids whose geometry can be precisely controlled in the lab,” said Alberto Fernandez-Nieves, an assistant professor in the Georgia Tech School of Physics. “This work opens up a new way to experimentally look at problems that nobody has been able to study before. The properties of toroidal surfaces are very different, from a general point of view, from those of spherical surfaces.”

Development of these “stable nematic droplets with handles” was described May 20 in the early edition of the journal Proceedings of the National Academy of Sciences (PNAS). The research has been sponsored by the National Science Foundation (NSF), and also involves researchers at the Lorentz Institute for Theoretical Physics at Leiden University in The Netherlands and at York University in the United Kingdom.

Droplets normally form spherical shapes to minimize the surface area required to contain a given volume of liquid. Though they appear to be simple, when an ordered material like a crystal or a liquid crystal lives on the surface of a sphere, it provides interesting challenges to mathematicians and theoretical physicists.

A physicist who focuses on soft condensed matter, Fernandez-Nieves had long been interested in the theoretical aspects of curved surfaces. Working with graduate research assistant Ekapop Pairam and postdoctoral fellow Jayalakshmi Vallamkondu, he wanted to extend the theoretical studies into the experimental world for a system of toroidal shapes.

But could doughnut-shaped droplets be made in the lab?

The partial answer came from churros Fernandez-Nieves ate as a child growing up in Spain. These “Spanish doughnuts” – actually spirals – are made by injecting dough into hot oil while the dough is spun and fried.

In the lab at a much smaller size scale, the researchers found they could use a similar process with two immiscible liquids such as glycerine or water and oil, a needle and a magnetically-controlled rotating stage. A droplet of glycerine is injected into the rotating stage containing the oil. In certain conditions, a jet forms at the needle, which closes up into a torus because of the imposed rotation.

“You can control the two relevant curvatures of the torus,” explained Fernandez-Nieves. “You can control how large it is because you can move the needle with respect to the rotation axis. You can also infuse more volume to make the torus thicker.”

If the stage is then turned off, however, the drop of glycerine quickly loses its doughnut shape as surface tension forces it to become a traditional spherical droplet. To maintain the toroidal shape, Fernandez-Nieves and his collaborators replace the surrounding oil with a springy polymeric material; the springy character of this material provides a force that can overcome surface tension forces.

“When you are making the toroid, the forces on the needle are large enough that the surrounding material behaves as a fluid,” he explained. “Once you stop, the elasticity of the outside fluid overcomes surface tension and that freezes the structure in place.”

The researchers have been using the doughnut shapes to study how liquid crystal materials, which are well known for their applications in laptop displays, organize inside the torus. These materials have degrees of order beyond those of simple liquids such as water. For these materials, the toroidal shape provides a new set of study opportunities from both theoretical and experimental perspectives.

“This changes how you think about a liquid inside a container,” said Fernandez-Nieves. “The materials will still adopt the shape of the container, but its energy will be different depending on the shape. The materials feel distortions and will try to minimize them. In a given shape, the molecules in these materials will rearrange themselves to minimize these distortions.”

Among the surprises is that the nematic droplets created with toroidal shapes become chiral, that is, they adopt a certain twisting direction and break their mirror symmetry.

“In our case, the materials we are using are not chiral under normal circumstances,” he noted. “This was a surprise to us, and it has to do with how we are confining the molecules.”

Beyond looking at the dynamics of creating the droplets and how ordered materials behave when the torus transforms into a sphere, Fernandez-Nieves and colleagues are also exploring potential biological applications, applying electrical fields to the droplets, and sharing the unique structures with scientists at other institutions.

“This is the first time that stable nematic droplets have been generated with handles, and we have exploited that to look at the nematic organization inside those spaces,” said Fernandez-Nieves. “Our experiments open up a versatile new approach for generating handled droplets made of an ordered material that can self-assemble into interesting and unexpected structures when confined to these non-spherical spaces. Now that theoreticians realize we can generate and study these systems, there may be much more development in this area.”

In addition to those already mentioned, the paper’s authors included V. Koning, B.C. van Zuiden and V. Vitelli from Leiden University, M.A. Bates from the University of York in the United Kingdom, and P.W. Ellis from Georgia Tech.

The research described here has been sponsored by the National Science Foundation under CAREER award DMR-0847304. The findings and conclusions are those of the authors and do not necessarily represent the official views of the National Science Foundation.

CITATION: E. Pairam, et al., “Stable nematic droplets with handles,” (Proceedings of the National Academy of Sciences, 2013)

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
Media Relations Contact:
John Toon (404-894-6986)(jtoon@gatech.edu).
Writer: John Toon

John Toon | Newswise
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>