Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulation-based matchmaking for Shape Memory Alloys

01.07.2010
RUB-researchers discover Shape-Memory Metals with unprecedented functional stability / Cover story in „Advanced Functional Materials“

A new shape memory alloy with up to now unprecedented functional stability was developed by researchers from the Institute for Materials at the Ruhr-Universität Bochum in cooperation with researchers from the USA and Japan. Based on a theoretical prediction, they used combinatorial materials science methods, i.e. so-called materials libraries, for a targeted search of optimized alloy compositions. The result consists of four components: titanium, nickel, copper and palladium.

From the new material, the researchers expect a stable shape memory effect and improved lifetime, e.g. for applications in medical devices such as stents. The scientists report their results in the noted journal “Advanced Functional Materials”, which selected their contribution as cover story.

Shape memory alloys

Shape memory alloys (SMAs) are materials that after being deformed mechanically can return to their original shape upon heating (shape memory effect) and/or allow for “elastic” strains up to 10 % (superelasticity). Those remarkable effects are based on a reversible martensitic phase transformation: a change in the crystal lattice as a function of temperature or stress. However, such changes do not leave the material untouched. Defects are formed during cyclic deformations, which accumulate and lead to decreasing shape memory properties. “The defects originate from the interface between the high-temperature phase (austenite) and the low-temperature phase (martensite) as a result of the crystallographic incompatibility”, explains Robert Zarnetta from the Materials Research Department at the RUB.

Four matching partners

Theoretical calculations from the co-workers in the USA predicted that the incompatibility can vanish for alloys with special lattice parameters, such that the high-temperature and the low-temperature phase are compatible. As optimal partners for such an alloy, titanium, nickel, copper and palladium were identified by theory. The successful experimental “matchmaking” was realized by using thin film materials libraries, which enabled the screening of a large portion of the four component (quaternary) composition space using dedicated high-throughput characterization tools. “To find or optimize the special composition in the quaternary alloy system using conventional methods would have been extremely challenging”, explains Prof. Dr. Alfred Ludwig (Chair Materials for Microtechnology) and thus highlights the advantage of the combinatorial materials science approach.

Compatible crystal lattices promote stability

Next to the discovery of the special alloy composition, the scientists also determined the underlying composition-structure-property relationship, which was subsequently used to successfully transfer the thin film results to bulk material. Thus, the fundamental relation between the crystal structure of a shape memory alloy and its functional stability could be proven for the first time. “An improved compatibility of the high- and low-temperature crystal lattice results in improved functional stability” summarized Robert Zarnetta , going on to explain “that this relation could only be discovered by bridging the fields of combinatorial SMA thin film and the conventional bulk materials development”.

Collaborative Research Center and Research Department

The results were conducted, based on the work within the collaborative research center “SFB 459”, at the Chairs “Materials for Microtechnology” (Prof. Dr.-Ing. Alfred Ludwig, Institute for Materials) and “Materials Science and Engineering” (Prof. Dr.-Ing. Gunther Eggeler, Institute for Materials) and in cooperation with the Materials Research Department at the RUB.

Title record

Zarnetta, R., Takahashi, R., Young, M. L., Savan, A., Furuya, Y., Thienhaus, S., Maass, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y. S., Srivastava, V., James, R. D., Takeuchi, I., Eggeler, G. & Ludwig, A.: Identification of quaternary shape memory alloys with near zero thermal hysteresis and unprecedented functional stability, In: Advanced Functional Materials 2010, 20, 1917-1923), doi: 10.1002/adfm.200902336

Further information

Prof. Dr.-Ing. Alfred Ludwig, Materials for Microtechnology, Institute for Materials, Faculty of Mechanical Engineering, Ruhr-Universität Bochum, Tel. 0234/32-27492, alfred.ludwig@rub.de

http://www.rub.de/wdm and http://www.rub.de/sfb459

Robert Zarnetta, Materials Research Department, Ruhr-Universität Bochum, Tel. 0234/32-25929, robert.zarnetta@rub.de

Dr. Josef König | idw
Further information:
http://www.rd.rub.de/is3
http://www.rub.de/sfb459

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>