Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shooting at ceramics

02.04.2012
Producing thin ceramic components has until now been a laborious and expensive process, as parts often get distorted during manufacture and have to be discarded as waste. Researchers are now able to reshape the surfaces of malformed components by bombarding them with tiny pellets.

In corrosive, high-temperature environments, metals quickly lose their elasticity. Beyond certain temperatures the material fails and its properties are compromised; metallic springs stop working if heated above 500 degrees Celsius, for example. But what to do if these are exactly the conditions a production process requires?


Shot is fi red from a blasting gun at a ceramic leaf spring to correct its shape or cause specifi c warping as desired. © Fraunhofer IWM, Felicitas Gemetz

One way of avoiding the problem has been to make components out of ceramic, a material that is lightweight, rigid, corrosion-resistant and able to withstand high temperatures. Yet this only offers a partial solution, as producing thin ceramics for parts such as leaf springs, lightweight mirrors for optical and extraterrestrial use, or membranes for sensors and fuel cells is both time-consuming and expensive. This is because ceramics can only be machined using costly diamond tools, and the process itself creates tensions within the surface of the material which cause the finished part to distort as soon as it is removed from the machine. Reshaping the components after manufacture has never been a viable option before as the material is too brittle, and so the large amounts of waste that are generated push the costs up.

Precisely calculated paths guide the way

Researchers at the Fraunhofer Institutes for Mechanics of Materials IWM in Freiburg and for Production Systems and Design Technology IPK in Berlin have now found a way to straighten out distorted ceramics using shot peening, a process by which small pellets, known as shot, are fired at the surface of a component with a blasting gun. The shot strikes the surface and alters the shape of the thin, outermost layer of material.

By moving the gun over the ceramic part along a precisely calculated path, scientists are able to counteract any undesired warping or create lightly curved mirrors out of thin, even ceramic plates. “Shot peening is common practice for working metals,” says Dr. Wulf Pfeiffer, who manages this business unit at the IWM, “but the technique has never been used on ceramics because they are so brittle – they could shatter, like a china plate being hit with a hammer. This meant that we had to adapt the method to the material with great precision.” The researchers began by analyzing which size of shot would be suitable for use on ceramics, as the surface could be destroyed by pellets that were too big. Pellet speed is another critical factor: hitting the material too fast causes damage; too slow and the shape of the surface is not altered enough.

They also discovered that it is important not to bombard the same spot too often with too much shot. Before producing a new component, the scientists first conduct experimental analysis to determine what can be expected of the particular ceramic involved. They fire a beam of shot at it and then measure the resultant stresses to see what sort of deformation is possible and how the beam should be directed.

The experts have already produced various prototypes, including a ceramic leaf spring and a concave mirror. For manufacturing simple components, the technique is now advanced enough to be used in series production. The IWM scientists have recently gone one step further and are developing a computer simulation that will allow components to be worked in multiple axes. Meanwhile their colleagues at the IPK are working on automating the process using a robot.

Dr.-Ing. Wulf Pfeiffer | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/april/shooting-at-ceramics.html

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>