Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharkskin for airplanes, ships and wind energy plants

21.05.2010
To lower the fuel consumption of airplanes and ships, it is necessary to reduce their flow resistance, or drag. An innovative paint system makes this possible. This not only lowers costs, it also reduces CO2 emissions.

The inspiration – and model – for the paint‘s structure comes from nature: The scales of fast-swimming sharks have evolved in a manner that significantly diminishes drag, or their resistance to the flow of currents.

The challenge was to apply this knowledge to a paint that could withstand the extreme demands of aviation. Temperature fluctuations of -55 to +70 degrees Celsius; intensive UV radiation and high speeds. Yvonne Wilke, Dr. Volkmar Stenzel and Manfred Peschka of the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Bremen developed not only a paint that reduces aerodynamic drag, but also the associated manufacturing technology. In recognition of their achievement, the team is awarded the 2010 Joseph von Fraunhofer Prize.

The paint involves of a sophisticated formulation. An integral part of the recipe: the nanoparticles, which ensure that the paint withstands UV radiation, temperature change and mechanical loads, on an enduring basis. „Paint offers more advantages," explains Dr. Volkmar Stenzel. „It is applied as the outermost coating on the plane, so that no other layer of material is required. It adds no additional weight, and even when the airplane is stripped – about every five years, the paint has to be completely removed and reapplied – no additional costs are incurred. In addition, it can be applied to complex three-dimensional surfaces without a problem." The next step was to clarify how the paint could be put to practical use on a production scale. „Our solution consisted of not applying the paint directly, but instead through a stencil," says Manfred Peschka. This gives the paint its sharkskin structure. The unique challenge was to apply the fluid paint evenly in a thin layer on the stencil, and at the same time ensure that it can again be detached from the base even after UV radiation, which is required for hardening.

When applied to every airplane every year throughout the world, the paint could save a volume of 4.48 million tons of fuel. This also applies to ships: The team was able to reduce wall friction by more than five percent in a test with a ship construction testing facility. Extrapolated over one year, that means a potential savings of 2,000 tons of fuel for a large container ship. With this application, the algae or muscles that attach to the hull of a ship only complicate things further. Researchers are working on two solutions for the problem. Yvonne Wilke explains: „One possibility exists in structuring the paint in such a way that fouling organisms cannot get a firm grasp and are simply washed away at high speeds, for example. The second option aims at integrating an anti-fouling element – which is incompatible for nature."

Irrespective of the fuel savings, there are even more interesting applications – for instance, with wind energy farms. Here as well, air resistance has a negative effect on the rotor blades. The new paint would improve the degree of efficiency of the systems – and thus the energy gain.

Yvonne Wilke | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/05/innovative-paint-system.jsp

More articles from Materials Sciences:

nachricht New approach to revolutionize the production of molecular hydrogen
22.05.2017 | Technische Universität Dresden

nachricht Photocatalyst makes hydrogen production 10 times more efficient
19.05.2017 | Kobe University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>