Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists use nanoscale building blocks and DNA 'glue' to shape 3-D superlattices


New approach to designing ordered composite materials for possible energy applications

Taking child's play with building blocks to a whole new level-the nanometer scale-scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have constructed 3D "superlattice" multicomponent nanoparticle arrays where the arrangement of particles is driven by the shape of the tiny building blocks.

Controlling the self-assembly of nanoparticles into superlattices is an important approach to build functional materials. The Brookhaven team used nanosized building blocks -- cubes or octahedrons -- decorated with DNA tethers to coordinate the assembly of spherical nanoparticles coated with complementary DNA strands.

Credit: Brookhaven National Laboratory

The method uses linker molecules made of complementary strands of DNA to overcome the blocks' tendency to pack together in a way that would separate differently shaped components. The results, published in Nature Communications, are an important step on the path toward designing predictable composite materials for applications in catalysis, other energy technologies, and medicine.

"If we want to take advantage of the promising properties of nanoparticles, we need to be able to reliably incorporate them into larger-scale composite materials for real-world applications," explained Brookhaven physicist Oleg Gang, who led the research at Brookhaven's Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility.

"Our work describes a new way to fabricate structured composite materials using directional bindings of shaped particles for predictable assembly," said Fang Lu, the lead author of the publication.

The research builds on the team's experience linking nanoparticles together using strands of synthetic DNA. Like the molecule that carries the genetic code of living things, these synthetic strands have complementary bases known by the genetic code letters G, C, T, and A, which bind to one another in only one way (G to C; T to A). Gang has previously used complementary DNA tethers attached to nanoparticles to guide the assembly of a range of arrays and structures. The new work explores particle shape as a means of controlling the directionality of these interactions to achieve long-range order in large-scale assemblies and clusters.

Spherical particles, Gang explained, normally pack together to minimize free volume. DNA linkers-using complementary strands to attract particles, or non-complementary strands to keep particles apart-can alter that packing to some degree to achieve different arrangements. For example, scientists have experimented with placing complementary linker strands in strategic locations on the spheres to get the particles to line up and bind in a particular way. But it's not so easy to make nanospheres with precisely placed linker strands.

"We explored an alternate idea: the introduction of shaped nanoscale 'blocks' decorated with DNA tethers on each facet to control the directional binding of spheres with complementary DNA tethers," Gang said.

When the scientists mixed nanocubes coated with DNA tethers on all six sides with nanospheres of approximately the same size, which had been coated with complementary tethers, these two differently shaped particles did not segregate as would have been expected based on their normal packing behavior. Instead, the DNA "glue" prevented the separation by providing an attractive force between the flat facets of the blocks and the tethers on the spheres, as well as a repulsive force between the non-pairing tethers on same-shaped objects.

"The DNA permits us to enforce rules: spheres attract cubes (mutually); spheres do not attract spheres; and cubes do not attract cubes," Gang said. "This breaks the conventional packing tendency and allows for the system to self-assemble into an alternating array of cubes and spheres, where each cube is surrounded by six spheres (one to a face) and each sphere is surrounded by six cubes." Using octahedral blocks instead of cubes achieved a different arrangement, with one sphere binding to each of the blocks' eight triangular facets.

The method required some thermal processing to achieve the most uniform long-range order. And experiments with different types of DNA tethers showed that having flexible DNA strands was essential to accommodate the pairing of differently shaped particles.

"The flexible DNA shells 'soften' the particles, which allows them to fit into arrangements where the shapes do not match geometrically," Lu said. But excessive softness results in unnecessary particle freedom, which can ruin a perfect lattice, she added. Finding the ideal flexibility for the tethers was an essential part of the work.

The scientists used transmission and scanning electron microscopy at the CFN and also conducted x-ray scattering experiments at the National Synchrotron Light Source, another DOE Office of Science User Facility at Brookhaven Lab, to reveal the structure and take images of assembled clusters and lattices at various length scales. They also explained the experimental results with models based on the estimation of nanoscale interactions between the tiny building blocks.

"Ultimately, this work shows that large-scale binary lattices can be formed in a predictable manner using this approach," Gang said. "Given that our approach does not depend on the particular particle's material and the large variety of particle shapes available-many more than in a child's building block play set-we have the potential to create many diverse types of new nanomaterials."


This research and operations at CFN and NSLS were funded by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Media Contact

Karen McNulty Walsh


Karen McNulty Walsh | EurekAlert!

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>