Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists use nanoscale building blocks and DNA 'glue' to shape 3-D superlattices


New approach to designing ordered composite materials for possible energy applications

Taking child's play with building blocks to a whole new level-the nanometer scale-scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have constructed 3D "superlattice" multicomponent nanoparticle arrays where the arrangement of particles is driven by the shape of the tiny building blocks.

Controlling the self-assembly of nanoparticles into superlattices is an important approach to build functional materials. The Brookhaven team used nanosized building blocks -- cubes or octahedrons -- decorated with DNA tethers to coordinate the assembly of spherical nanoparticles coated with complementary DNA strands.

Credit: Brookhaven National Laboratory

The method uses linker molecules made of complementary strands of DNA to overcome the blocks' tendency to pack together in a way that would separate differently shaped components. The results, published in Nature Communications, are an important step on the path toward designing predictable composite materials for applications in catalysis, other energy technologies, and medicine.

"If we want to take advantage of the promising properties of nanoparticles, we need to be able to reliably incorporate them into larger-scale composite materials for real-world applications," explained Brookhaven physicist Oleg Gang, who led the research at Brookhaven's Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility.

"Our work describes a new way to fabricate structured composite materials using directional bindings of shaped particles for predictable assembly," said Fang Lu, the lead author of the publication.

The research builds on the team's experience linking nanoparticles together using strands of synthetic DNA. Like the molecule that carries the genetic code of living things, these synthetic strands have complementary bases known by the genetic code letters G, C, T, and A, which bind to one another in only one way (G to C; T to A). Gang has previously used complementary DNA tethers attached to nanoparticles to guide the assembly of a range of arrays and structures. The new work explores particle shape as a means of controlling the directionality of these interactions to achieve long-range order in large-scale assemblies and clusters.

Spherical particles, Gang explained, normally pack together to minimize free volume. DNA linkers-using complementary strands to attract particles, or non-complementary strands to keep particles apart-can alter that packing to some degree to achieve different arrangements. For example, scientists have experimented with placing complementary linker strands in strategic locations on the spheres to get the particles to line up and bind in a particular way. But it's not so easy to make nanospheres with precisely placed linker strands.

"We explored an alternate idea: the introduction of shaped nanoscale 'blocks' decorated with DNA tethers on each facet to control the directional binding of spheres with complementary DNA tethers," Gang said.

When the scientists mixed nanocubes coated with DNA tethers on all six sides with nanospheres of approximately the same size, which had been coated with complementary tethers, these two differently shaped particles did not segregate as would have been expected based on their normal packing behavior. Instead, the DNA "glue" prevented the separation by providing an attractive force between the flat facets of the blocks and the tethers on the spheres, as well as a repulsive force between the non-pairing tethers on same-shaped objects.

"The DNA permits us to enforce rules: spheres attract cubes (mutually); spheres do not attract spheres; and cubes do not attract cubes," Gang said. "This breaks the conventional packing tendency and allows for the system to self-assemble into an alternating array of cubes and spheres, where each cube is surrounded by six spheres (one to a face) and each sphere is surrounded by six cubes." Using octahedral blocks instead of cubes achieved a different arrangement, with one sphere binding to each of the blocks' eight triangular facets.

The method required some thermal processing to achieve the most uniform long-range order. And experiments with different types of DNA tethers showed that having flexible DNA strands was essential to accommodate the pairing of differently shaped particles.

"The flexible DNA shells 'soften' the particles, which allows them to fit into arrangements where the shapes do not match geometrically," Lu said. But excessive softness results in unnecessary particle freedom, which can ruin a perfect lattice, she added. Finding the ideal flexibility for the tethers was an essential part of the work.

The scientists used transmission and scanning electron microscopy at the CFN and also conducted x-ray scattering experiments at the National Synchrotron Light Source, another DOE Office of Science User Facility at Brookhaven Lab, to reveal the structure and take images of assembled clusters and lattices at various length scales. They also explained the experimental results with models based on the estimation of nanoscale interactions between the tiny building blocks.

"Ultimately, this work shows that large-scale binary lattices can be formed in a predictable manner using this approach," Gang said. "Given that our approach does not depend on the particular particle's material and the large variety of particle shapes available-many more than in a child's building block play set-we have the potential to create many diverse types of new nanomaterials."


This research and operations at CFN and NSLS were funded by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Media Contact

Karen McNulty Walsh


Karen McNulty Walsh | EurekAlert!

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>