Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science provides new way to peer into pores

10.09.2015

Rice University lab finds technique to characterize nanoscale spaces in porous materials

Rice University scientists led a project to "see" and measure the space in porous materials, even if that space is too small or fragile for traditional microscopes.


The paths fluorescent particles take as they diffuse through a porous nanoscale structure reveal the arrangement of the pores through a technique developed by scientists at Rice University.

Credit: Landes Research Group/Rice University

The Rice lab of chemist Christy Landes invented a technique to characterize such nanoscale spaces, an important advance toward her group's ongoing project to efficiently separate "proteins of interest" for drug manufacture. It should also benefit the analysis of porous materials of all kinds, like liquid crystals, hydrogels, polymers and even biological substances like cytosol, the compartmentalized fluids in cells.

The research with collaborators at the University of California, Los Angeles (UCLA) and Kansas State University appears in the American Chemical Society journal ACS Nano.

It's easy to use a fluorescent chemical compound to tag, or "label," a material and take a picture of it, Landes said. "But what if the thing you want a picture of is mostly nothing? That's the problem we had to solve to understand what was going on in the separation material."

The team aims to improve protein separation in a process called chromatography, in which solutions flow through porous material in a column. Because different materials travel at different speeds, the components separate and can be purified.

"We learned that in agarose, a porous material used to separate proteins, the clustering of charges is very important," Landes said. While the protein project succeeded, "when we matched experimental data to our theory, there was something additional contributing to the separation that we couldn't explain."

The answer appeared to be with how charged particles like nanoscale ligands arranged themselves in the pores. "It was the only possible explanation," Landes said. "So we needed a way to image the pores."

Standard techniques like atomic force, X-ray and electron microscopy would require samples to be either frozen or dried. "That would either shrink or swell or change their structures," she said.

It occurred to the team to combine their experience with the Nobel Prize-winning super-resolution microscopy and fluorescence correlation spectroscopy techniques. Super-resolution microscopy is a way to see objects at resolutions below the diffraction limit, which restricts the viewing of things that are smaller than the wavelength of light directed at them.

Correlation spectroscopy is a way to measure fluorescent particles as they fluctuate. By crunching data collected via a combination of super-resolution microscopy and correlation spectroscopy, the researchers mapped slices of the material to see where charged particles tended to cluster.

The combined technique, which they call fcsSOFI (for "fluorescence correlation spectroscopy super-resolution optical fluctuation imaging"), measures fluorescent tags as they diffuse in the pores, which allows researchers to simultaneously characterize dimensions and dynamics within the pores. The lab tested its technique on both soft agarose hydrogels and lyotropic liquid crystals. Next, they plan to extend their mapping to three-dimensional spaces.

"We now have both pieces of our puzzle: We can see our proteins interacting with charges within our porous material, and we can measure the pores," Landes said. "This has direct relevance to the protein separation problem for the $100 billion pharmaceutical industry."

###

Co-authors of the paper are Rice alumnus Lydia Kisley and Rice graduate students Lawrence Tauzin and Bo Shuang; Rice Quantum Institute/Smalley-Curl Institute summer undergraduate student Rachel Brunetti of Scripps College, Claremont, Calif.; graduate student Xiyu Yi and Shimon Weiss, a professor of chemistry and biochemistry, at UCLA; and graduate student Alec Kirkeminde and Daniel Higgins, a professor of chemistry, at Kansas State.

The Welch Foundation, the National Science Foundation, the Willard Chair at UCLA and the Department of Energy supported the research.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acsnano.5b03430

This news release can be found online at http://news.rice.edu/2015/09/09/science-provides-new-way-to-peer-into-pores/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related Materials:

Landes Research Group: http://www.lrg.rice.edu

Wiess School of Natural Sciences: http://naturalsciences.rice.edu

Images for download:

http://news.rice.edu/wp-content/uploads/2015/09/0914_POROUS-1-WEB.jpg

The paths fluorescent particles take as they diffuse through a porous nanoscale structure reveal the arrangement of the pores through a technique developed by scientists at Rice University. (Credit: Landes Research Group/Rice University)

http://news.rice.edu/wp-content/uploads/2015/09/0914_POROUS-2-WEB.jpg

Christy Landes

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go here.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

David Ruth | EurekAlert!

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>