Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers Researchers Identify Materials That May Deliver More 'Bounce'

10.03.2011
Springy nanostructured metals hold promise of making engines, medical equipment, security systems more efficient and effective

Rutgers researchers have identified a class of high-strength metal alloys that show potential to make springs, sensors and switches smaller and more responsive.


Credit: Physical Review Letters
Nano-sized particles embedded in alloys can make alloys highly elastic and enable them to convert electrical and magnetic energy into movement.

The alloys could be used in springier blood vessel stents, sensitive microphones, powerful loudspeakers, and components that boost the performance of medical imaging equipment, security systems and clean-burning gasoline and diesel engines.

While these nanostructured metal alloys are not new – they are used in turbine blades and other parts demanding strength under extreme conditions – the Rutgers researchers are pioneers at investigating these new properties.

“We have been doing theoretical studies on these materials, and our computer modeling suggests they will be super-responsive,” said Armen Khachaturyan, professor of Materials Science and Engineering in the Rutgers School of Engineering. He and postdoctoral researcher Weifeng Rao believe these materials can be a hundred times more responsive than today’s materials in the same applications.

Writing in the March 11 issue of the journal Physical Review Letters, the researchers describe how this class of metals with embedded nanoparticles can be highly elastic, or “springy,” and can convert electrical and magnetic energy into movement or vice-versa. Materials that exhibit these properties are known among scientists and engineers as “functional” materials.

One class of functional materials generates an electrical voltage when the material is bent or compressed. Conversely, when the material is exposed to an electric field, it will deform. Known as piezoelectric materials, they are used in ultrasound instruments; audio components such as microphones, speakers and even venerable record players; autofocus motors in some camera lenses; spray nozzles in inkjet printer cartridges; and several types of electronic components.

High Resolution VersionIn another class of functional materials, changes in magnetic fields deform the material and vice-versa. These magnetorestrictive materials have been used in naval sonar systems, pumps, precision optical equipment, medical and industrial ultrasonic devices, and vibration and noise control systems.

The materials that Khachaturyan and Rao are investigating are technically known as “decomposed two-phase nanostructured alloys.” They form by cooling metals that were exposed to high temperatures at which the nanosized particles of one crystal structure, or phase, are embedded into another type of phase. The resulting structure makes it possible to deform the metal under an applied stress while allowing the metal to snap back into place when the stress is removed.

These nanostructured alloys might be more effective than traditional metals in applications such blood vessel stents, which have to be flexible but can’t lose their “springiness.” In the piezoelectric and magnetorestrictive components, the alloy’s potential to snap back into shape after deforming – a property known as non-hysteresis – could improve energy efficiency over traditional materials that require energy input to restore their original shapes.

In addition to potentially showing responses far greater than traditional materials, the new materials may be tunable; that is, they may exhibit smaller or larger shape changes and output force based on varying mechanical, electrical or magnetic input and the material processing.

The researchers hope to test the results of their computer simulations on actual metals in the near future.

The Rutgers team collaborated with Manfred Wittig, professor of Materials Science and Engineering at the University of Maryland. Their research was funded by the National Science Foundation and the U.S. Department of Energy.

Media Contact: Carl Blesch
732-932-7084 x616
E-mail: cblesch@ur.rutgers.edu

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>