Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from Saarbruecken arrange nanoparticles like "giant atoms"

18.06.2012
Scientists at INM – Leibniz Institute for New Materials found out that certain nanoparticles assemble into groups as if they were atoms. Like the atoms of metals or noble gases, they form specific structures depending on their number.
Through their findings, the researchers are now able to make precisely defined structures from nanoparticles. Normally, nanoparticles form rather disordered, often loose and fuzzy clusters. The results were recently published in the scientific magazine "Nano Letters".

The researchers assume that this unexpected behavior derives from the smallness of the nanoparticles. "We assume that the nanoparticles with a core diameter of only six nanometers show a behavior similar to atoms: They move very fast, collide with each other and attract each other", explains Tobias Kraus, head of the Structure Formation Group. Therefore, they can assemble almost as orderly as atoms.
Depending on the number of nanoparticles, the scientists can now predict which three-dimensional lattice are formed by the particles. "Imagine that clusters with 20 particles look like a sphere, whereas 40 particles arrange rather like a cube and 60 particles form a pyramid", explains Kraus, who holds degrees in materials science and chemical engineering. It is possible to produce specific shapes by defining the quantity of the nanoparticles in the production process. "Since nanoparticles arranged as a sphere have different properties than nanoparticles arranged as a cube, we can influence properties by the number of the particles", says Kraus. "A rather elongated cluster may not fit through the pores of a filter, for example, although it contains more particles than a spherical cluster."

The scientists use a well-established principle to force the nanoparticles into this highly ordered structure. To begin with, all gold nanoparticles must be of the same size, which is achieved in a classic preparation procedure: The researchers dissolve little bars of gold in a concentrated acid, combine the dissolved gold with organic molecules and add surface-active substances. When heating this mixture, the scientists obtain nanoparticles with a diameter of six millionths of a millimeter. The nanoparticles swim in oil, which is then dispersed into droplets. Each droplet contains several nanoparticles. "As these droplets evaporate, the space for the nanoparticles is increasingly reduced so that they assemble in an orderly manner and form the ordered clusters", says Kraus.

In the future, the group will integrate various particles into the clusters, each of them having a different task. This may be a first step to building microscopic machinery from particles.
Original publication: Johann Lacava, Philip Born, Tobias, Kraus, "Nanoparticle Clusters with Lennard-Jones Geometries", Nano Letters, DOI: 10.1021/nl3013659

Contact:
Dr. Tobias Kraus
Structure Formation Group
INM – Leibniz Institute for New Materials
Phone: +49 681 9300 389
Email: tobias.kraus@inm-gmbh.de

INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring questions: Which material properties are new, how can they be investigated and how can they be used in the future?

INM – Leibniz Institute for New Materials, situated in Saarbruecken/Germany, is an internationally leading centre for materials research. It is a scientific partner to national and international institutes and a provider of research and development for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 180 collaborators. Its main research fields are Chemical Nanotechnology, Interface Materials, and Materials in Biology.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://www.wgl.de/

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>