Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers inject nanofiber spheres carrying cells into wounds to grow tissue

18.04.2011
For the first time, scientists have made star-shaped, biodegradable polymers that can self-assemble into hollow, nanofiber spheres, and when the spheres are injected with cells into wounds, these spheres biodegrade, but the cells live on to form new tissue.

Developing this nanofiber sphere as a cell carrier that simulates the natural growing environment of the cell is a very significant advance in tissue repair, says Peter Ma, professor at the University of Michigan School of Dentistry and lead author of a paper about the research scheduled for advanced online publication in Nature Materials. Co-authors are Xiaohua Liu and Xiaobing Jin.

Repairing tissue is very difficult and success is extremely limited by a shortage of donor tissue, says Ma, who also has an appointment at the U-M College of Engineering. The procedure gives hope to people with certain types of cartilage injuries for which there aren't good treatments now. It also provides a better alternative to ACI, which is a clinical method of treating cartilage injuries where the patient's own cells are directly injected into the patient's body. The quality of the tissue repair by the ACI technique isn't good because the cells are injected loosely and are not supported by a carrier that simulates the natural environment for the cells, Ma says.

To repair complex or oddly shaped tissue defects, an injectable cell carrier is desirable to achieve accurate fit and to minimize surgery, he says. Ma's lab has been working on a biomimetic strategy to design a cell matrix---a system that copies biology and supports the cells as they grow and form tissue---using biodegradable nanofibers.

Ma says the nanofibrous hollow microspheres are highly porous, which allows nutrients to enter easily, and they mimic the functions of cellular matrix in the body. Additionally, the nanofibers in these hollow microspheres do not generate much degradation byproducts that could hurt the cells, he says.

The nanofibrous hollow spheres are combined with cells and then injected into the wound. When the nanofiber spheres, which are slightly bigger than the cells they carry, degrade at the wound site, the cells they are carrying have already gotten a good start growing because the nanofiber spheres provide an environment in which the cells naturally thrive.

This approach has been more successful than the traditional cell matrix currently used in tissue growth, he says. Until now, there has been no way to make such a matrix injectable so it's not been used to deliver cells to complex-shaped wounds.

During testing, the nanofiber repair group grew as much as three to four times more tissue than the control group, Ma says. The next step is to see how the new cell carrier works in larger animals and eventually in people to repair cartilage and other tissue types.

Peter Ma: http://www.dent.umich.edu/bms/facultyandstaff/ma

School of Dentistry: http://www.dent.umich.edu/

EDITORS: For a high resolution photo of a nanofiber sphere, see http://ns.umich.edu/index.html?Releases/2011/Apr11/starr.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>