Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers envision high-tech applications for 'multiferroic' crystals

12.02.2010
Two of The Florida State University's most accomplished scientists recently joined forces on a collaborative research project that has yielded groundbreaking results involving an unusual family of crystalline minerals.

Their findings could lay the groundwork for future researchers seeking to develop a new generation of computer chips and other information-storage devices that can hold vast amounts of data and be strongly encrypted for security purposes.

Working with a team of researchers from various disciplines, Naresh S. Dalal and Sir Harold W. "Harry" Kroto, both world-renowned chemists and educators, took a close look at a family of crystals known as metal-organic frameworks, or MOFs. Employing both laboratory experimentation and computational analysis, they found that four such crystals possessed properties that rarely coexist.

"We identified these four crystals as 'multiferroic,' meaning that they are simultaneously ferromagnetic and ferroelectric in nature when cooled to a specific temperature," said Dalal, Florida State's Dirac Professor of Chemistry and Biochemistry. (Ferromagnetism means a material possesses magnetic poles, while ferroelectricity refers to a material that possesses positive and negative electrical charges that can be reversed when an external electrical field is applied.)

"Normally, these two properties are mutually exclusive," Dalal said. "Most materials are either ferromagnetic or ferroelectric based on the number of electrons in the ion's outer electron shell. Therefore, finding four multiferroic materials at one time is quite scientifically significant and opens numerous doors in terms of potential applications."

Multiferroic materials have been a hot topic of research in recent years, with researchers finding applications in the areas of hydrogen storage and the design of advanced optical elements, among others. Kroto sees another potential use: in the creation of high-powered computer memories and other data storage devices that can hold far more information than is currently possible.

"Theoretically, it might be possible to design devices that are much smaller and faster than the ones we use today to store and transmit data," said Kroto, a Francis Eppes Professor in Florida State's Department of Chemistry and Biochemistry. "And with data split over two mediums, information could be encrypted in a way that makes it far more secure than is currently possible. This could have wide-ranging applications in areas as diverse as the aeronautics industry, the military, the workplace and even the average consumer's home."

Dalal pointed to another possible benefit — high-tech devices that make far less of an environmental impact.

"The four new multiferroic crystals that we have identified all substitute other, less toxic metals for lead, which is a potent neurotoxin," he said. "By reducing the amount of lead that enters landfills, we also reduce the amount that enters our water supply — and our bodies."

Dalal, Kroto and their colleagues recently published a paper on their findings in the peer-reviewed Journal of the American Chemical Society (JACS). Their research was then summarized in a second article published in the prestigious international science journal Nature — a powerful symbol of the significance with which their findings have been greeted within the worldwide scientific community.

"On the basis of the type of materials research I was keen to initiate here at Florida State, it was natural to collaborate with Dr. Dalal due to his deep understanding of the complexities of phase transitions," Kroto said. "It is in particular the subtle aspects of phase behavior, well beyond those traditional ones exhibited by normal gases, liquids and solids, that led to this work being highlighted recently by Nature and Angewandte Chemie." (The latter is a prominent, peer-reviewed scientific journal that reviews all aspects of chemistry.)

In addition to Dalal and Kroto, other collaborators from Florida State were Ronald J. Clark, an emeritus professor of chemistry and biochemistry who continues to conduct research; Prashant Jain, a graduate research assistant; and Vasanth Ramachandran, a graduate teaching assistant. Additional researchers were Haidong Zhou, an assistant scholar/scientist at the National High Magnetic Field Laboratory in Tallahassee; Anthony K. Cheetham, Professor of Materials Science and Metallurgy at the University of Cambridge in England; and Brian H. Toby, a senior physicist at Argonne National Laboratory in Illinois.

In the world of science, Dalal and Kroto are known as scientific heavy hitters, each with decades of research experience and scores of professional accolades to his credit. Kroto is perhaps best known as one of three recipients of the 1996 Nobel Prize for Chemistry and Biochemistry for his co-discovery of buckminsterfullerene, a form of pure carbon better known as "buckyballs." He came to Florida State in 2004 after 37 years at the University of Sussex in England. Dalal, meanwhile, was recognized in 2007 as one of the top scientists in the southern United States by the Memphis Section of the American Chemical Society, which selected him to receive its Southern Chemist Award. That same year, he was named the top chemist in Florida by the Florida Section of the American Chemical Society, which bestowed upon him its annual Florida Award.

Narseh Dalal | EurekAlert!
Further information:
http://www.fsu.edu

Further reports about: Biochemistry Chemical Laboratory Merit Award Nature Immunology Nobel Prize

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>