Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Rapid Assembly Process in Nanoscale

29.12.2008
Research conducted at the National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN) by the University of Massachusetts Lowell and Northeastern University led to the development of rapid template-assisted assembly of polymer blends in the nanoscale. The research team created a highly effective process that takes only 30 seconds to complete and does not require annealing.

The rapidly advancing field of nanotechnology demands simple and quick fabrication processes in the nanoscale. With more lightweight flexible plastic solar collectors (organic photovoltaics) and flexible plastic electronics, the challenge is to develop fast, large scale and cost-effective nanoscale assembly processes of different polymers to make flexible devices and materials.

Previous nanoscale polymer assembly methods used specially synthesized polymers that were not available commercially and required annealing, a process that can take up to 48 hours.

Research conducted at the National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN) by the University of Massachusetts Lowell and Northeastern University led to the development of rapid template-assisted assembly of polymer blends in the nanoscale. The research team created a highly effective process that takes only 30 seconds to complete and does not require annealing.

This study, funded by the NSF, is published online in the journal Advanced Materials.

“The techniques demonstrated in this work can be used in high-rate nanomanufacturing of polymer-based products, from flexible electronics to materials for medical applications,” said Joey Mead, Ph.D., co-author of this paper and deputy director of UMass Lowell’s CHN. “This is why we say nanomanufacturing is an ‘enabling technology’ -- it impacts many fields and could create entirely new economic sectors.”

The short assembly times make it possible to fabricate binary-component polymer arrays at high rates, a critical component for commercially relevant and cost effective nanomanufacturing. The research team used nanotemplates to direct the assembly of each single polymer component in a specific location. Most importantly, the team selectively assembled polymer blends to desired sites through a one-step process with high specificity and selectivity.

This novel and versatile approach to creating nanoscale polymeric patterns can be used to generate a variety of complex geometries, including 90-degree bends, T-junctions and square and circle arrays. In addition, these patterns can be made over a large area with high resolution, overcoming the constraint of limited areas and slow rates.

“This approach for preparation of chemically functionalized substrates has the potential for a wide variety of applications, including biosensors, biochips, photonics, nanolithography and electronics,” said Ahmed Busnaina, Ph.D., co-author of this paper and director of Northeastern’s CHN.

The research was led by professors Joey Mead, Ph.D., Carol Barry, D.Eng., Ming Wei, D.Eng., Jun Lee, D.Eng., and Liang Fang from the University of Massachusetts Lowell and Ahmed Busnaina, Ph.D., Sivasubramanian Somu, Ph.D. and Xugang Xiong from Northeastern.

About the NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing

In the fall of 2004, the National Science Foundation awarded Northeastern University and its partners, the University of Massachusetts Lowell, the University of New Hampshire, Michigan State University and the Museum of Science, a Nanoscale Science and Engineering Center for high-rate Nanomanufacturing with funding of $12.4 million over five years. The Center for high-rate nanomanufacturing is focused on developing tools and processes that will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanoparticles, etc.) and polymer nanostructures. The center nanotemplates are utilized to conduct fast massive directed assembly of nanoscale elements by controlling the forces required to assemble, detach, and transfer nanoelements at high rates and over large areas. The developed nanotemplates and tools will accelerate the creation of highly anticipated commercial products and will enable the creation of an entirely new generation of applications.

Jenny Eriksen | Newswise Science News
Further information:
http://www.neu.edu

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>