Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers build a tougher, lighter wind turbine blade

31.08.2011
Polyurethane reinforced with carbon nanotubes outperforms currently used materials

Efforts to build larger wind turbines able to capture more energy from the air are stymied by the weight of blades. A Case Western Reserve University researcher has built a prototype blade that is substantially lighter and eight times tougher and more durable than currently used blade materials.

Marcio Loos, a post-doctoral researcher in the Department of Macromolecular Science and Engineering, works with colleagues at Case Western Reserve, and investigators from Bayer MaterialScience in Pittsburgh, and Molded Fiber Glass Co. in Ashtabula, Ohio, comparing the properties of new materials with the current standards used in blade manufacturing.

On his own, Loos went to the lab on weekends and built the world's first polyurethane blade reinforced with carbon nanotubes. He wanted to be sure the composite that was scoring best on preliminary tests could be molded into the right shape and maintain properties.

Using a small commercial blade as a template, he manufactured a 29-inch blade that is substantially lighter, more rigid and tougher.

"The idea behind all this is the need to develop stronger and lighter materials which will enable manufacturing of blades for larger rotors," Loos said.

That's an industry goal.

In order to achieve the expansion expected in the market for wind energy, turbines need a bigger share of the wind. But, simply building larger blades isn't a smart answer.

The heavier the blades, the more wind is needed to turn the rotor. That means less energy is captured. And the more the blades flex in the wind, the more they lose the optimal shape for catching moving air, so, even less energy is captured.

Lighter, stiffer blades enable maximum energy and production.

"Results of mechanical testing for the carbon nanotube reinforced polyurethane show that this material outperforms the currently used resins for wind blades applications," said Ica Manas-Zloczower, professor of macromolecular science and engineering and associate dean in the Case School of Engineering.

Loos is working in the Manas-Zloczower lab where she and Chemical Engineering Professor Donald L. Feke, a vice provost at the university, serve as advisors on the project.

In a comparison of reinforcing materials, the researchers found carbon nanotubes are lighter per unit of volume than carbon fiber and aluminum and had more than 5 times the tensile strength of carbon fiber and more than 60 times that of aluminum.

Fatigue testing showed the reinforced polyurethane composite lasts about eight times longer than epoxy reinforced with fiberglass. The new material was also about eight times tougher in delamination fracture tests.

The performance in each test was even better when compared to vinyl ester reinforced with fiberglass, another material used to make blades.

The new composite also has shown fracture growth rates at a fraction of the rates found for traditional epoxy and vinyl ester composites.

Loos and the rest of the team are continuing to test for the optimal conditions for the stable dispersion of nanotubes, the best distribution within the polyurethane and methods to make that happen.

The functional prototype blades built by Loos, which were used to turn a 400-watt turbine, will be stored in our laboratory, Manas-Zloczower said. "They will be used to emphasize the significant potential of carbon nanotube reinforced polyurethane systems for use in the next generation of wind turbine blades."

The research is funded by a U.S. Department of Energy stimulus grant and Bayer MaterialScience.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>