Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers build a tougher, lighter wind turbine blade

31.08.2011
Polyurethane reinforced with carbon nanotubes outperforms currently used materials

Efforts to build larger wind turbines able to capture more energy from the air are stymied by the weight of blades. A Case Western Reserve University researcher has built a prototype blade that is substantially lighter and eight times tougher and more durable than currently used blade materials.

Marcio Loos, a post-doctoral researcher in the Department of Macromolecular Science and Engineering, works with colleagues at Case Western Reserve, and investigators from Bayer MaterialScience in Pittsburgh, and Molded Fiber Glass Co. in Ashtabula, Ohio, comparing the properties of new materials with the current standards used in blade manufacturing.

On his own, Loos went to the lab on weekends and built the world's first polyurethane blade reinforced with carbon nanotubes. He wanted to be sure the composite that was scoring best on preliminary tests could be molded into the right shape and maintain properties.

Using a small commercial blade as a template, he manufactured a 29-inch blade that is substantially lighter, more rigid and tougher.

"The idea behind all this is the need to develop stronger and lighter materials which will enable manufacturing of blades for larger rotors," Loos said.

That's an industry goal.

In order to achieve the expansion expected in the market for wind energy, turbines need a bigger share of the wind. But, simply building larger blades isn't a smart answer.

The heavier the blades, the more wind is needed to turn the rotor. That means less energy is captured. And the more the blades flex in the wind, the more they lose the optimal shape for catching moving air, so, even less energy is captured.

Lighter, stiffer blades enable maximum energy and production.

"Results of mechanical testing for the carbon nanotube reinforced polyurethane show that this material outperforms the currently used resins for wind blades applications," said Ica Manas-Zloczower, professor of macromolecular science and engineering and associate dean in the Case School of Engineering.

Loos is working in the Manas-Zloczower lab where she and Chemical Engineering Professor Donald L. Feke, a vice provost at the university, serve as advisors on the project.

In a comparison of reinforcing materials, the researchers found carbon nanotubes are lighter per unit of volume than carbon fiber and aluminum and had more than 5 times the tensile strength of carbon fiber and more than 60 times that of aluminum.

Fatigue testing showed the reinforced polyurethane composite lasts about eight times longer than epoxy reinforced with fiberglass. The new material was also about eight times tougher in delamination fracture tests.

The performance in each test was even better when compared to vinyl ester reinforced with fiberglass, another material used to make blades.

The new composite also has shown fracture growth rates at a fraction of the rates found for traditional epoxy and vinyl ester composites.

Loos and the rest of the team are continuing to test for the optimal conditions for the stable dispersion of nanotubes, the best distribution within the polyurethane and methods to make that happen.

The functional prototype blades built by Loos, which were used to turn a 400-watt turbine, will be stored in our laboratory, Manas-Zloczower said. "They will be used to emphasize the significant potential of carbon nanotube reinforced polyurethane systems for use in the next generation of wind turbine blades."

The research is funded by a U.S. Department of Energy stimulus grant and Bayer MaterialScience.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>