Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Surface Orbital "Roughness" in Manganites

26.11.2007
Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have shown that in a class of materials called manganites, the electronic behavior at the surface is considerably different from that found in the bulk. Their findings, which were published online in the November 18, 2007, issue of Nature Materials, could have implications for the next generation of electronic devices, which will involve increasingly smaller components.

As devices shrink, the proportion of surface area grows in comparison to the material's volume. Therefore, it's important to understand the characteristics of a material's surface in order to predict how those materials behave and how electrons will travel across an interface, said Brookhaven physicist John Hill.

Hill and his fellow researchers were particularly interested in how the outer electrons of atoms in a so-called manganite material are arranged. Manganites - consisting of a rare-earth element such as lanthanum combined with manganese and oxygen - show a huge change in electrical resistance when a magnetic field is applied. Taking advantage of this "colossal magnetoresistance effect" could be the key to developing advanced magnetic memory devices, magnetic field sensors, or transistors.

The research team, which also includes scientists from KEK (Japan), CNRS (France), Ames Laboratory, and Argonne National Laboratory, used x-ray scattering at Brookhaven's National Synchrotron Light Source and Argonne's Advanced Photon Source to study the orbital order - the arrangement of electrons in the outermost shell - of the material at the surface and in its bulk.

"When you cool down the bulk material to a particular temperature, all the orbitals arrange themselves in a very particular pattern," Hill said. "The question is, does the same thing happen at the surface? And if not, how is it different?"

The authors found that at the surface, the orbital order is more disordered than in the bulk material. And, even though the manganite's crystal surface is atomically smooth, the orbital surface is rough. These characteristics could affect the way electrons are transferred across a material's surface and provide fundamental information for future research and development. Next, the researchers plan to look for this surface orbital "roughness" in other materials and test its effect on magnetism.

Funding for this research was provided by the Office of Basic Energy Sciences within in the U.S. Department of Energy's Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>