Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-tech textiles pave the way for glowing garments

Researchers at The University of Manchester have developed high-tech textile yarns that can be used to make clothing glow in the dark.

The yarns have been developed by The William Lee Innovation Centre (WLIC), based in the University’s School of Materials – and have the potential to be incorporated into clothing worn by cyclists, joggers and pedestrians.

Current high visibility products – such as those used by emergency services, cyclists and highway maintenance workers – depend on external light sources to make them visible.

They can be ineffective in low light situations and require a light source from something like vehicle headlights to make them visible. This can lead to the wearer being seen too late.

The latest WLIC development, made from electroluminescent (EL) yarns, allows the wearer to be permanently visible and therefore improves personal safety.

EL yarn is a novel technology, which emits light when powered by a battery. Its development has been based on thin film electroluminescent technology.

The yarn consists of an inner conductive core yarn, coated with electroluminescent ink – which means it emits light when an electric current is passed through it – and a protective transparent encapsulation, with an outer conductive yarn wrapped around it.

When the EL yarn is powered with an inverter the resultant electrical field between the inner and outer conductor causes the electroluminescent coating to emit light. The emission of light occurs between the contact points between the outer yarn and the inner yarn.

Other potential applications for the yarn include flexible woven or knitted road safety signs that communicate written instructions.

Dr Tilak Dias, Head of the WLIC, said: “At the moment the EL yarn we have developed is less flexible than conventional yarns. But it is more flexible than current optical fibres that are incorporated within fabrics to provide illumination.

“EL yarn can be easily incorporated into a knitted or woven fabric and the resultant active illuminating fabric provides illumination when it is powered.

“The luminance of a single strand of the EL yarn is greater than that of photoluminescent glow yarns, which are currently used in some high visibility applications.

“Weaving or knitting the yarn in a particular manner, so that more yarn per unit area is achieved, improves the luminance of the EL yarn.”

Jon Keighren | alfa
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>