Quantum mechanics predicts unusual lattice dynamics of vanadium metal under high pressure

This phase was not found in earlier experiments for any element and compound. The findings are being published in this week’s Net edition of Proceedings of the National Academy of Science, PNAS.

The relation between electronic structure and the crystallographic atomic arrangement is one of the fundamental questions in physics, geophysics and chemistry. Since the discovery of the atomic nature of matter and its periodic structure, this has remained as one of the main questions regarding the very foundation of solid systems.

Scientists at Carnegie's Geophysical Laboratory, USA and Uppsala University, Sweden have discovered a new type of phase transition – a change from one form to another-in vanadium, a metal that is commonly added to steel to make it harder and more durable. Under extremely high pressures, pure vanadium crystals change their shape but do not take up less space as a result, unlike most other elements that undergo phase transitions. This work was appeared in the February 23, 2007 issue of Physical Review Letters.

Trying to understand why high-pressure vanadium uniquely has the record-high superconducting temperature of all known elements inspired us to study high-pressure structure of vanadium. Usually high superconductivity is directly linked to the lattice dynamics of material.

In present paper in PNAS, again a collaboration between Uppsala University and Carnegie's Geophysical Laboratory, USA, we have looked in to the lattice dynamics of vanadium metal and it shows a very unusual behavior under pressure. A huge change in the electronic structure is driving force behind this unusual lattice dynamics. Moreover, our findings provide a new explanation for the continuous rising of superconducting temperature in high-pressure vanadium, and could lead us to the next breakthrough in superconducting materials.

Media Contact

Rajeev Ahuja EurekAlert!

More Information:

http://www.uu.se

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors