Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing a rare material spin state at NIST

18.09.2007
A team of international physicists that includes researchers from the National Institute of Standards and Technology (NIST) has found experimental evidence of a highly sought-after type of arrangement of atomic magnetic moments, or spins, in a series of materials.

Their work, one of the very few studies of this particular spin state, which has been postulated as a possible underlying mechanism for high-temperature superconductivity, may eventually serve as a test of current and future theoretical models of exotic spin states.

At the NIST Center for Neutron Research (NCNR) and the Hahn-Meitner Institute in Berlin, Germany, the scientists used intense beams of neutrons to probe a series of antiferromagnets, materials in which each spin—an intrinsic property of an atom that produces a tiny magnetic field called a magnetic “moment”—cancels another, giving the material a net magnetic field of zero. The results, described in the Aug. 26 online edition of Nature Materials,* revealed evidence of a rare and pporly understood “quantum paramagnetic” spin state, in which neighboring spins pair up to form “entangled spin singlets” that have an ordered pattern and that allow the material to weakly respond to an outside magnetic field—i.e., become paramagnetic.

The antiferromagnets used in this work are composed mainly of zinc and copper, and are distinguished by their proportions of each, with the number of copper ions determined by the number of zinc ions. At the atomic level, the material is formed of many repeating layers. The atoms of each layer are arranged into a structure known as a “kagome lattice,” a pattern of triangles laid point-to-point whose basic unit resembles a six-point star.

Physicists have been studying antiferromagnets with kagome structures over the last 20 years because they suspected these materials harbored interesting spin structures. But good model systems, like the zinc/copper compounds used by this group, had not been identified.

At the NCNR, the researchers determined how varying concentrations of zinc and copper and varying temperatures affected fluctuations in the way the spins are arranged in these materials. Using a neutron spectrometer at the Hahn-Meitner Institute, they also investigated the effect of external magnetic fields of varying strengths. The group uncovered several magnetic phases in addition to the quantum paramagnetic state and were able to construct a complete phase diagram as a function of the zinc concentration and temperature. They are planning further experimental and theoretical studies to learn more about the kagome system.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>