Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crack Formation in Concrete

30.08.2007
Cracks in concrete structure elements can strongly prejudice their function and aesthetic appearance. Cracks cannot usually be avoided but their number and size can be controlled and it is technically feasible to close the cracks that form in many cases.

Concrete is an artificial rock produced from cement, aggrgates (sand and gravel or broken stone) and water. It cannot be considered as a material with specified properties as these develop as a function of age and continue changing over time. Cement hardening and drying is usually accompanied by shrinkage, therefore fine cracks are inevitable. Cracks exceeding 0.1 mm can be handled by optimising the concrete composition and by using reinforcement.

Crack formation caused by dynamic and static stress on concrete structure elements is due to working loads and permanent load. Thermal and chemical impacts and frost-deicing stress in the pore system of the concrete are also important. Suitably designed composition and/or preventive measures (hydrophobic treatment, coating) can long-lasting prevent weathering damages.

Permanent weathering, horizontal surfaces, dark surfaces and sharp edges increase the risk of cracking formation and/or flaking due to increased thermal strain and unfavourable stresses in the building component. Avoiding cracks greater than 0.1 mm is often planned in the design phase for technical reasons (e.g. waterproof concrete). This may also be necessary on aesthetic causes.

Before filling the cracks an appraisal has to be made to specify necessity, objectives and methods. Two techniques are applicable in principle to fill the cracks: soaking (filling the cracks without applying pressure) or injection (filling the cracks under pressure). Epoxy resins, polyurethane, cement paste or cement grouts are usually used for this purpose. The Guidelines of Concrete Repair of the German Committee for Reinforced Concrete of 2001 and/or DIN EN 1504 Part 5 and 9 regulate the relevant technical aspects.

Contact:
Dr.-Ing. Hans-Carsten Kühne
Head of Working Group "Cementitious materials:
advanced performance "
Division VII.1 Building Materials
Phone: +49 30 8104-3229
Email: hans-carsten.kuehne@bam.de

Dr. Ulrike Rockland | idw
Further information:
http://www.bam.de

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>