Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inverse Woodpile Structure Has Extremely Large Photonic Band Gap

22.05.2007
Researchers at the U. of I. have built an inverse woodpile structure of germanium, a material with a higher refractive index than silicon.

As many homeowners know, when stacking firewood, pieces should be placed close enough to permit passage of a mouse, but not of a cat chasing the mouse.

Now, imagine a woodpile where all those mouse passageways are packed with ice, the wood carefully removed, and you have an idea of what the latest photonic structure built by researchers at the University of Illinois looks like.

It's called an inverse woodpile structure, and the U. of I. device is built of germanium, a material with a higher refractive index than silicon.

"Until now, all woodpile structures have been composed of solid or hollow rods in an air matrix," said Paul Braun, a University Scholar and a professor of materials science and engineering at the U. of I. "Our structure is composed of a germanium matrix containing a periodic array of tubular holes, made possible by a unique and flexible fabrication technique."

In a paper accepted for publication in the journal Advanced Materials, and posted on its Web site, Braun and his co-authors describe the fabrication and optical properties of their germanium inverse woodpile structure; a structure with one of the widest photonic band gaps ever reported.

"A wider band gap means there is a broader spectral range where you can control the flow of light," said Braun, who also is affiliated with the university's Beckman Institute, Frederick Seitz Materials Research Laboratory, and Micro and Nanotechnology Laboratory. "In many applications, from low-threshold lasers to highly efficient solar cells, photonic crystals with wide band gaps may be required."

To create their germanium inverse woodpile structure, the researchers first produced a polymer template by using a robotic deposition process called direct-write assembly.

The process employs a concentrated polymeric ink, dispensed as a filament to form the woodpile rods, from a nozzle approximately 1 micron in diameter (a micron is 1 millionth of a meter, approximately 50 times smaller than the diameter of a human hair).

The nozzle dispenses the ink into a reservoir on a computer-controlled, three-axis micropositioner. After the pattern for the first layer is generated, the nozzle is raised and another layer is deposited. This process is repeated until the desired three-dimensional structure is produced.

Next, the researchers deposited a sacrificial coating of aluminum oxide and silicon dioxide onto the entire structure. The coating enlarged the rods and increased the contact area between them. The space between the rods was subsequently filled with germanium.

The researchers then heated the structure to burn away the polymer template. Lastly, the sacrificial oxide coating was dissolved by acid, leaving behind a tiny block of germanium with an inner network of interconnected tubes and channels.

The finished structure - built and tested as a proof of concept - consists of 12 layers of tubes and measures approximately 0.5 millimeters by 0.5 millimeters, and approximately 15 microns thick.

"The direct-write template approach offers new design rules, which allows us to fabricate structures we otherwise could not have made,"

said co-author Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering and interim director of the Frederick Seitz Materials Research Laboratory.

"Our technique also can be adopted for converting other polymeric woodpile templates, such as those made by laser-writing or electro-beam lithography, into inverse woodpile structures,"

Lewis said.

In addition to their potential as photonic materials, the interconnected, inverse woodpile structures could find use as low-cost microelectromechanical systems, microfluidic networks for heat dissipation, and biological devices.

With Braun and Lewis, co-authors of the paper are postdoctoral research associate Florencio García-Santamaria and graduate student Mingjie Xu, both at Illinois; electrical engineering professor Shanhui Fan at Stanford University; and physicist Virginie Lousse at the Laboratoire de Physique du Solide in Belgium.

The work was funded by the U.S. Department of Energy and the U.S. Army Research Office.

To reach Paul Braun, call 217-244-7293; e-mail: pbraun@uiuc.edu To reach Jennifer Lewis, call 217-244-4973; e-mail: jalewis@uiuc.edu.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>