Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into high-temperature superconductors

28.02.2007
Scientists at the Carnegie Institution's Geophysical Laboratory in collaboration with a physicist at the Chinese University of Hong Kong have discovered that two different physical parameters —pressure and the substitution of different isotopes of oxygen (isotopes are different forms of an element) —have a similar effect on electronic properties of mysterious materials called high-temperature superconductors.

The results also suggest that vibrations (called phonons), within the lattice structure of these materials, are essential to their superconductivity by binding electrons in pairs. The research is published in the February 26 - March 2 on-line edition of the Proceedings of the National Academy of Sciences.

Superconductors are substances that conduct electricity — the flow of electrons — without any resistance. Electrical resistance disappears in superconductors at specific, so-called, transition temperatures, Tc's. The early conventional superconductors had to be cooled to extremely low (below 20 K or –253ºC) temperatures for electricity to flow freely. In 1986 scientists discovered a class of high-temperature superconductors made of ceramic copper oxides that have much higher transition temperatures. But understanding how they work and thus how they can be manipulated has been surprisingly hard.

As Carnegie's Xiao-Jia Chen, lead author of the study explains: "High-temperature superconductors consist of copper and oxygen atoms in a layered structure. Scientists have been trying hard to determine the properties that affect their transition temperatures since 1987. In this study, we found that by substituting oxygen-16 with its heavier sibling oxygen-18, the transition temperature changes; such a substitution is known as the isotope effect. The different masses of the isotopes cause a change in lattice vibrations and hence the binding force that enables pairs of electrons to travel through the material without resistance. Even more exciting is our discovery that manipulating the compression of the crystalline lattice of the high-Tc material has a similar effect on the superconducting transition temperature. Our study revealed that pressure and the isotope effect have equivalent roles on the transition temperature in cuprate superconductors."

Superconducting materials can achieve their maximum transition temperatures at a specific amount of "doping," which is simply the addition of charged particles (negatively charged electrons or positively charged holes). Both the transition temperature and isotope effect critically depend on the doping level. For optimally doped materials, the higher the maximum transition temperature is, the smaller the isotope effect is.

Understanding this behavior is very challenging. The Carnegie / Hong Kong collaboration found that if phonons are at work, they would account both for the magnitude of the isotope effect, as a function of the doping level, and the variation among different types of cuprate superconductors. The study also revealed what might be happening to modify the electronic structures among various optimally doped materials to cause the variation of the superconducting properties. The suite of results presents a unified picture for the oxygen isotope effect in cuprates at ambient condition and under high pressure.

"Although we've known for some time that vibrations of the atoms, or phonons, propel electrons through conventional superconductors, they have just recently been suspected to be at work in high-temperature superconductors," commented coauthor Viktor Struzhkin. "This research suggests that lattice vibrations are important to the way the high-Tc materials function as well. We are very excited by the possibilities arising from these findings."

Xiao-Jia Chen | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>