Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into high-temperature superconductors

28.02.2007
Scientists at the Carnegie Institution's Geophysical Laboratory in collaboration with a physicist at the Chinese University of Hong Kong have discovered that two different physical parameters —pressure and the substitution of different isotopes of oxygen (isotopes are different forms of an element) —have a similar effect on electronic properties of mysterious materials called high-temperature superconductors.

The results also suggest that vibrations (called phonons), within the lattice structure of these materials, are essential to their superconductivity by binding electrons in pairs. The research is published in the February 26 - March 2 on-line edition of the Proceedings of the National Academy of Sciences.

Superconductors are substances that conduct electricity — the flow of electrons — without any resistance. Electrical resistance disappears in superconductors at specific, so-called, transition temperatures, Tc's. The early conventional superconductors had to be cooled to extremely low (below 20 K or –253ºC) temperatures for electricity to flow freely. In 1986 scientists discovered a class of high-temperature superconductors made of ceramic copper oxides that have much higher transition temperatures. But understanding how they work and thus how they can be manipulated has been surprisingly hard.

As Carnegie's Xiao-Jia Chen, lead author of the study explains: "High-temperature superconductors consist of copper and oxygen atoms in a layered structure. Scientists have been trying hard to determine the properties that affect their transition temperatures since 1987. In this study, we found that by substituting oxygen-16 with its heavier sibling oxygen-18, the transition temperature changes; such a substitution is known as the isotope effect. The different masses of the isotopes cause a change in lattice vibrations and hence the binding force that enables pairs of electrons to travel through the material without resistance. Even more exciting is our discovery that manipulating the compression of the crystalline lattice of the high-Tc material has a similar effect on the superconducting transition temperature. Our study revealed that pressure and the isotope effect have equivalent roles on the transition temperature in cuprate superconductors."

Superconducting materials can achieve their maximum transition temperatures at a specific amount of "doping," which is simply the addition of charged particles (negatively charged electrons or positively charged holes). Both the transition temperature and isotope effect critically depend on the doping level. For optimally doped materials, the higher the maximum transition temperature is, the smaller the isotope effect is.

Understanding this behavior is very challenging. The Carnegie / Hong Kong collaboration found that if phonons are at work, they would account both for the magnitude of the isotope effect, as a function of the doping level, and the variation among different types of cuprate superconductors. The study also revealed what might be happening to modify the electronic structures among various optimally doped materials to cause the variation of the superconducting properties. The suite of results presents a unified picture for the oxygen isotope effect in cuprates at ambient condition and under high pressure.

"Although we've known for some time that vibrations of the atoms, or phonons, propel electrons through conventional superconductors, they have just recently been suspected to be at work in high-temperature superconductors," commented coauthor Viktor Struzhkin. "This research suggests that lattice vibrations are important to the way the high-Tc materials function as well. We are very excited by the possibilities arising from these findings."

Xiao-Jia Chen | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>